File: //lib/python3.12/__pycache__/random.cpython-312.pyc
�
    )!�h{�  �                   �^  � d Z ddlmZ ddlmZmZm	Z
mZm
Z ddlmZmZmZmZ ddlmZmZmZ ddlmZmZ m!Z" ddl#m$Z% ddl&m'Z( dd	l)m*Z+ dd
l,m-Z.m/Z0 ddl1m1Z2 ddl#Z3ddl4Z4	 dd
l5m6Z7 g d�Z:d ed�      z   ed�      z  Z; ed�      Z<d ed�      z   Z=dZ>de> z  Z?dZ@ G d� de4j�                  �      ZA G d� deA�      ZB eA�       ZCeCj�                  ZDeCj�                  ZEeCj�                  ZFeCj�                  ZGeCj�                  ZHeCj�                  ZIeCj�                  ZJeCj�                  ZKeCj�                  ZLeCj�                  ZMeCj�                  ZNeCj�                  ZOeCj�                  ZPeCj�                  ZQeCj�                  ZReCj�                  ZSeCj�                  ZTeCj�                  ZUeCj�                  ZVeCj�                  ZWeCj�                  ZXeCj�                  ZYeCj�                  ZZeCj�                  Z[d� Z\d!d�Z] e^e3d�      r e3j�                  eCj�                  ��       e`d k(  r e]�        yy# e8$ r
 dd
l9m6Z7 Y ���w xY w)"aE  Random variable generators.
    bytes
    -----
           uniform bytes (values between 0 and 255)
    integers
    --------
           uniform within range
    sequences
    ---------
           pick random element
           pick random sample
           pick weighted random sample
           generate random permutation
    distributions on the real line:
    ------------------------------
           uniform
           triangular
           normal (Gaussian)
           lognormal
           negative exponential
           gamma
           beta
           pareto
           Weibull
    distributions on the circle (angles 0 to 2pi)
    ---------------------------------------------
           circular uniform
           von Mises
    discrete distributions
    ----------------------
           binomial
General notes on the underlying Mersenne Twister core generator:
* The period is 2**19937-1.
* It is one of the most extensively tested generators in existence.
* The random() method is implemented in C, executes in a single Python step,
  and is, therefore, threadsafe.
�    )�warn)�log�exp�pi�e�ceil)�sqrt�acos�cos�sin)�tau�floor�isfinite)�lgamma�fabs�log2)�urandom)�Sequence)�index)�
accumulate�repeat)�bisectN)�sha512)�Random�SystemRandom�betavariate�binomialvariate�choice�choices�expovariate�gammavariate�gauss�getrandbits�getstate�lognormvariate�
normalvariate�
paretovariate�	randbytes�randint�random�	randrange�sample�seed�setstate�shuffle�
triangular�uniform�vonmisesvariate�weibullvariate�   g      ��       @�      @�      �?�      @�5   �   �   c                   �  � � e Zd ZdZdZd$d�Zd%� fd�	Z� fd�Z� fd�Zd� Z	d	� Z
d
� Zd� Zd� Z
d
ez  fd�Ze
Zd� Zdefd�Zd� Zd� Zd� Zdd�d�Zd$dd
d�d�Zd� Zd&d�Zd'd�Zd'd�Zd� Zd(d�Zd� Zd� Z d � Z!d!� Z"d"� Z#d)d#�Z$� xZ%S )*r   a�  Random number generator base class used by bound module functions.
    Used to instantiate instances of Random to get generators that don't
    share state.
    Class Random can also be subclassed if you want to use a different basic
    generator of your own devising: in that case, override the following
    methods:  random(), seed(), getstate(), and setstate().
    Optionally, implement a getrandbits() method so that randrange()
    can cover arbitrarily large ranges.
    �   Nc                 �4   � | j                  |�       d| _        y)zeInitialize an instance.
        Optional argument x controls seeding, as for Random.seed().
        N)r-   �
gauss_next)�self�xs     �/usr/lib/python3.12/random.py�__init__zRandom.__init__~   s   � � 	
�	�	�!�����    c           	      �  �� |dk(  r�t        |t        t        f�      rpt        |t        �      r|j                  d�      n|}|rt	        |d   �      dz  nd}t        t        |�      D ]
  }d|z  |z  dz  }� |t
        |�      z  }|dk(  rdn|}n�|d	k(  rkt        |t        t        t        f�      rPt        |t        �      r|j                  �       }t        j                  |t        |�      j                  �       z   �      }n:t        |t        d
�      t        t        t        t        t        f�      st        d�      �t         �| �E  |�       d
| _        y
)a\  Initialize internal state from a seed.
        The only supported seed types are None, int, float,
        str, bytes, and bytearray.
        None or no argument seeds from current time or from an operating
        system specific randomness source if available.
        If *a* is an int, all bits are used.
        For version 2 (the default), all of the bits are used if *a* is a str,
        bytes, or bytearray.  For version 1 (provided for reproducing random
        sequences from older versions of Python), the algorithm for str and
        bytes generates a narrower range of seeds.
        r;   zlatin-1r   �   iCB l   ���� ������r:   NzOThe only supported seed types are: None,
int, float, str, bytes, and bytearray.)�
isinstance�str�bytes�decode�ord�map�len�	bytearray�encode�int�
from_bytes�_sha512�digest�type�float�	TypeError�superr-   r?   )r@   �a�versionrA   �c�	__class__s        �rB   r-   zRandom.seed�   s  �� �$ �a�<�J�q�3��,�7�'1�!�U�';�����#��A�"#��A�a�D�	�Q���A���a�[� 
=����k�Q�&�*<�<��
=�
��Q��K�A��2�g��1�A�
��\�j��S�%��,C�D��!�S�!��H�H�J�����q�7�1�:�#4�#4�#6�6�7�A��A��T�
�C���U�I�N�O�� E� F� 
F� 	���Q����rD   c                 �N   �� | j                   t        �| �	  �       | j                  fS )z9Return internal state; can be passed to setstate() later.)�VERSIONrY   r$   r?   )r@   r]   s    �rB   r$   zRandom.getstate�   s    �� ��|�|�U�W�-�/����@�@rD   c                 �  �� |d   }|dk(  r|\  }}| _         t        �| �	  |�       y|dk(  r.|\  }}| _         	 t        d� |D �       �      }t        �| �	  |�       yt	        d|�d| j                  ���      �# t        $ r}t
        |�d}~ww xY w)z:Restore internal state from object returned by getstate().r   r=   r:   c              3   �&