HEX
Server: nginx/1.24.0
System: Linux nowruzgan 6.8.0-57-generic #59-Ubuntu SMP PREEMPT_DYNAMIC Sat Mar 15 17:40:59 UTC 2025 x86_64
User: babak (1000)
PHP: 8.3.6
Disabled: NONE
Upload Files
File: /var/dev/math/ui/node_modules/d3-delaunay/dist/d3-delaunay.js
// https://github.com/d3/d3-delaunay v6.0.4 Copyright 2018-2021 Observable, Inc., 2021 Mapbox
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
typeof define === 'function' && define.amd ? define(['exports'], factory) :
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.d3 = global.d3 || {}));
}(this, (function (exports) { 'use strict';

const epsilon$1 = 1.1102230246251565e-16;
const splitter = 134217729;
const resulterrbound = (3 + 8 * epsilon$1) * epsilon$1;

// fast_expansion_sum_zeroelim routine from oritinal code
function sum(elen, e, flen, f, h) {
    let Q, Qnew, hh, bvirt;
    let enow = e[0];
    let fnow = f[0];
    let eindex = 0;
    let findex = 0;
    if ((fnow > enow) === (fnow > -enow)) {
        Q = enow;
        enow = e[++eindex];
    } else {
        Q = fnow;
        fnow = f[++findex];
    }
    let hindex = 0;
    if (eindex < elen && findex < flen) {
        if ((fnow > enow) === (fnow > -enow)) {
            Qnew = enow + Q;
            hh = Q - (Qnew - enow);
            enow = e[++eindex];
        } else {
            Qnew = fnow + Q;
            hh = Q - (Qnew - fnow);
            fnow = f[++findex];
        }
        Q = Qnew;
        if (hh !== 0) {
            h[hindex++] = hh;
        }
        while (eindex < elen && findex < flen) {
            if ((fnow > enow) === (fnow > -enow)) {
                Qnew = Q + enow;
                bvirt = Qnew - Q;
                hh = Q - (Qnew - bvirt) + (enow - bvirt);
                enow = e[++eindex];
            } else {
                Qnew = Q + fnow;
                bvirt = Qnew - Q;
                hh = Q - (Qnew - bvirt) + (fnow - bvirt);
                fnow = f[++findex];
            }
            Q = Qnew;
            if (hh !== 0) {
                h[hindex++] = hh;
            }
        }
    }
    while (eindex < elen) {
        Qnew = Q + enow;
        bvirt = Qnew - Q;
        hh = Q - (Qnew - bvirt) + (enow - bvirt);
        enow = e[++eindex];
        Q = Qnew;
        if (hh !== 0) {
            h[hindex++] = hh;
        }
    }
    while (findex < flen) {
        Qnew = Q + fnow;
        bvirt = Qnew - Q;
        hh = Q - (Qnew - bvirt) + (fnow - bvirt);
        fnow = f[++findex];
        Q = Qnew;
        if (hh !== 0) {
            h[hindex++] = hh;
        }
    }
    if (Q !== 0 || hindex === 0) {
        h[hindex++] = Q;
    }
    return hindex;
}

function estimate(elen, e) {
    let Q = e[0];
    for (let i = 1; i < elen; i++) Q += e[i];
    return Q;
}

function vec(n) {
    return new Float64Array(n);
}

const ccwerrboundA = (3 + 16 * epsilon$1) * epsilon$1;
const ccwerrboundB = (2 + 12 * epsilon$1) * epsilon$1;
const ccwerrboundC = (9 + 64 * epsilon$1) * epsilon$1 * epsilon$1;

const B = vec(4);
const C1 = vec(8);
const C2 = vec(12);
const D = vec(16);
const u = vec(4);

function orient2dadapt(ax, ay, bx, by, cx, cy, detsum) {
    let acxtail, acytail, bcxtail, bcytail;
    let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;

    const acx = ax - cx;
    const bcx = bx - cx;
    const acy = ay - cy;
    const bcy = by - cy;

    s1 = acx * bcy;
    c = splitter * acx;
    ahi = c - (c - acx);
    alo = acx - ahi;
    c = splitter * bcy;
    bhi = c - (c - bcy);
    blo = bcy - bhi;
    s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
    t1 = acy * bcx;
    c = splitter * acy;
    ahi = c - (c - acy);
    alo = acy - ahi;
    c = splitter * bcx;
    bhi = c - (c - bcx);
    blo = bcx - bhi;
    t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
    _i = s0 - t0;
    bvirt = s0 - _i;
    B[0] = s0 - (_i + bvirt) + (bvirt - t0);
    _j = s1 + _i;
    bvirt = _j - s1;
    _0 = s1 - (_j - bvirt) + (_i - bvirt);
    _i = _0 - t1;
    bvirt = _0 - _i;
    B[1] = _0 - (_i + bvirt) + (bvirt - t1);
    u3 = _j + _i;
    bvirt = u3 - _j;
    B[2] = _j - (u3 - bvirt) + (_i - bvirt);
    B[3] = u3;

    let det = estimate(4, B);
    let errbound = ccwerrboundB * detsum;
    if (det >= errbound || -det >= errbound) {
        return det;
    }

    bvirt = ax - acx;
    acxtail = ax - (acx + bvirt) + (bvirt - cx);
    bvirt = bx - bcx;
    bcxtail = bx - (bcx + bvirt) + (bvirt - cx);
    bvirt = ay - acy;
    acytail = ay - (acy + bvirt) + (bvirt - cy);
    bvirt = by - bcy;
    bcytail = by - (bcy + bvirt) + (bvirt - cy);

    if (acxtail === 0 && acytail === 0 && bcxtail === 0 && bcytail === 0) {
        return det;
    }

    errbound = ccwerrboundC * detsum + resulterrbound * Math.abs(det);
    det += (acx * bcytail + bcy * acxtail) - (acy * bcxtail + bcx * acytail);
    if (det >= errbound || -det >= errbound) return det;

    s1 = acxtail * bcy;
    c = splitter * acxtail;
    ahi = c - (c - acxtail);
    alo = acxtail - ahi;
    c = splitter * bcy;
    bhi = c - (c - bcy);
    blo = bcy - bhi;
    s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
    t1 = acytail * bcx;
    c = splitter * acytail;
    ahi = c - (c - acytail);
    alo = acytail - ahi;
    c = splitter * bcx;
    bhi = c - (c - bcx);
    blo = bcx - bhi;
    t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
    _i = s0 - t0;
    bvirt = s0 - _i;
    u[0] = s0 - (_i + bvirt) + (bvirt - t0);
    _j = s1 + _i;
    bvirt = _j - s1;
    _0 = s1 - (_j - bvirt) + (_i - bvirt);
    _i = _0 - t1;
    bvirt = _0 - _i;
    u[1] = _0 - (_i + bvirt) + (bvirt - t1);
    u3 = _j + _i;
    bvirt = u3 - _j;
    u[2] = _j - (u3 - bvirt) + (_i - bvirt);
    u[3] = u3;
    const C1len = sum(4, B, 4, u, C1);

    s1 = acx * bcytail;
    c = splitter * acx;
    ahi = c - (c - acx);
    alo = acx - ahi;
    c = splitter * bcytail;
    bhi = c - (c - bcytail);
    blo = bcytail - bhi;
    s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
    t1 = acy * bcxtail;
    c = splitter * acy;
    ahi = c - (c - acy);
    alo = acy - ahi;
    c = splitter * bcxtail;
    bhi = c - (c - bcxtail);
    blo = bcxtail - bhi;
    t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
    _i = s0 - t0;
    bvirt = s0 - _i;
    u[0] = s0 - (_i + bvirt) + (bvirt - t0);
    _j = s1 + _i;
    bvirt = _j - s1;
    _0 = s1 - (_j - bvirt) + (_i - bvirt);
    _i = _0 - t1;
    bvirt = _0 - _i;
    u[1] = _0 - (_i + bvirt) + (bvirt - t1);
    u3 = _j + _i;
    bvirt = u3 - _j;
    u[2] = _j - (u3 - bvirt) + (_i - bvirt);
    u[3] = u3;
    const C2len = sum(C1len, C1, 4, u, C2);

    s1 = acxtail * bcytail;
    c = splitter * acxtail;
    ahi = c - (c - acxtail);
    alo = acxtail - ahi;
    c = splitter * bcytail;
    bhi = c - (c - bcytail);
    blo = bcytail - bhi;
    s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
    t1 = acytail * bcxtail;
    c = splitter * acytail;
    ahi = c - (c - acytail);
    alo = acytail - ahi;
    c = splitter * bcxtail;
    bhi = c - (c - bcxtail);
    blo = bcxtail - bhi;
    t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
    _i = s0 - t0;
    bvirt = s0 - _i;
    u[0] = s0 - (_i + bvirt) + (bvirt - t0);
    _j = s1 + _i;
    bvirt = _j - s1;
    _0 = s1 - (_j - bvirt) + (_i - bvirt);
    _i = _0 - t1;
    bvirt = _0 - _i;
    u[1] = _0 - (_i + bvirt) + (bvirt - t1);
    u3 = _j + _i;
    bvirt = u3 - _j;
    u[2] = _j - (u3 - bvirt) + (_i - bvirt);
    u[3] = u3;
    const Dlen = sum(C2len, C2, 4, u, D);

    return D[Dlen - 1];
}

function orient2d(ax, ay, bx, by, cx, cy) {
    const detleft = (ay - cy) * (bx - cx);
    const detright = (ax - cx) * (by - cy);
    const det = detleft - detright;

    if (detleft === 0 || detright === 0 || (detleft > 0) !== (detright > 0)) return det;

    const detsum = Math.abs(detleft + detright);
    if (Math.abs(det) >= ccwerrboundA * detsum) return det;

    return -orient2dadapt(ax, ay, bx, by, cx, cy, detsum);
}

const EPSILON = Math.pow(2, -52);
const EDGE_STACK = new Uint32Array(512);

class Delaunator {

    static from(points, getX = defaultGetX, getY = defaultGetY) {
        const n = points.length;
        const coords = new Float64Array(n * 2);

        for (let i = 0; i < n; i++) {
            const p = points[i];
            coords[2 * i] = getX(p);
            coords[2 * i + 1] = getY(p);
        }

        return new Delaunator(coords);
    }

    constructor(coords) {
        const n = coords.length >> 1;
        if (n > 0 && typeof coords[0] !== 'number') throw new Error('Expected coords to contain numbers.');

        this.coords = coords;

        // arrays that will store the triangulation graph
        const maxTriangles = Math.max(2 * n - 5, 0);
        this._triangles = new Uint32Array(maxTriangles * 3);
        this._halfedges = new Int32Array(maxTriangles * 3);

        // temporary arrays for tracking the edges of the advancing convex hull
        this._hashSize = Math.ceil(Math.sqrt(n));
        this._hullPrev = new Uint32Array(n); // edge to prev edge
        this._hullNext = new Uint32Array(n); // edge to next edge
        this._hullTri = new Uint32Array(n); // edge to adjacent triangle
        this._hullHash = new Int32Array(this._hashSize).fill(-1); // angular edge hash

        // temporary arrays for sorting points
        this._ids = new Uint32Array(n);
        this._dists = new Float64Array(n);

        this.update();
    }

    update() {
        const {coords, _hullPrev: hullPrev, _hullNext: hullNext, _hullTri: hullTri, _hullHash: hullHash} =  this;
        const n = coords.length >> 1;

        // populate an array of point indices; calculate input data bbox
        let minX = Infinity;
        let minY = Infinity;
        let maxX = -Infinity;
        let maxY = -Infinity;

        for (let i = 0; i < n; i++) {
            const x = coords[2 * i];
            const y = coords[2 * i + 1];
            if (x < minX) minX = x;
            if (y < minY) minY = y;
            if (x > maxX) maxX = x;
            if (y > maxY) maxY = y;
            this._ids[i] = i;
        }
        const cx = (minX + maxX) / 2;
        const cy = (minY + maxY) / 2;

        let minDist = Infinity;
        let i0, i1, i2;

        // pick a seed point close to the center
        for (let i = 0; i < n; i++) {
            const d = dist(cx, cy, coords[2 * i], coords[2 * i + 1]);
            if (d < minDist) {
                i0 = i;
                minDist = d;
            }
        }
        const i0x = coords[2 * i0];
        const i0y = coords[2 * i0 + 1];

        minDist = Infinity;

        // find the point closest to the seed
        for (let i = 0; i < n; i++) {
            if (i === i0) continue;
            const d = dist(i0x, i0y, coords[2 * i], coords[2 * i + 1]);
            if (d < minDist && d > 0) {
                i1 = i;
                minDist = d;
            }
        }
        let i1x = coords[2 * i1];
        let i1y = coords[2 * i1 + 1];

        let minRadius = Infinity;

        // find the third point which forms the smallest circumcircle with the first two
        for (let i = 0; i < n; i++) {
            if (i === i0 || i === i1) continue;
            const r = circumradius(i0x, i0y, i1x, i1y, coords[2 * i], coords[2 * i + 1]);
            if (r < minRadius) {
                i2 = i;
                minRadius = r;
            }
        }
        let i2x = coords[2 * i2];
        let i2y = coords[2 * i2 + 1];

        if (minRadius === Infinity) {
            // order collinear points by dx (or dy if all x are identical)
            // and return the list as a hull
            for (let i = 0; i < n; i++) {
                this._dists[i] = (coords[2 * i] - coords[0]) || (coords[2 * i + 1] - coords[1]);
            }
            quicksort(this._ids, this._dists, 0, n - 1);
            const hull = new Uint32Array(n);
            let j = 0;
            for (let i = 0, d0 = -Infinity; i < n; i++) {
                const id = this._ids[i];
                if (this._dists[id] > d0) {
                    hull[j++] = id;
                    d0 = this._dists[id];
                }
            }
            this.hull = hull.subarray(0, j);
            this.triangles = new Uint32Array(0);
            this.halfedges = new Uint32Array(0);
            return;
        }

        // swap the order of the seed points for counter-clockwise orientation
        if (orient2d(i0x, i0y, i1x, i1y, i2x, i2y) < 0) {
            const i = i1;
            const x = i1x;
            const y = i1y;
            i1 = i2;
            i1x = i2x;
            i1y = i2y;
            i2 = i;
            i2x = x;
            i2y = y;
        }

        const center = circumcenter(i0x, i0y, i1x, i1y, i2x, i2y);
        this._cx = center.x;
        this._cy = center.y;

        for (let i = 0; i < n; i++) {
            this._dists[i] = dist(coords[2 * i], coords[2 * i + 1], center.x, center.y);
        }

        // sort the points by distance from the seed triangle circumcenter
        quicksort(this._ids, this._dists, 0, n - 1);

        // set up the seed triangle as the starting hull
        this._hullStart = i0;
        let hullSize = 3;

        hullNext[i0] = hullPrev[i2] = i1;
        hullNext[i1] = hullPrev[i0] = i2;
        hullNext[i2] = hullPrev[i1] = i0;

        hullTri[i0] = 0;
        hullTri[i1] = 1;
        hullTri[i2] = 2;

        hullHash.fill(-1);
        hullHash[this._hashKey(i0x, i0y)] = i0;
        hullHash[this._hashKey(i1x, i1y)] = i1;
        hullHash[this._hashKey(i2x, i2y)] = i2;

        this.trianglesLen = 0;
        this._addTriangle(i0, i1, i2, -1, -1, -1);

        for (let k = 0, xp, yp; k < this._ids.length; k++) {
            const i = this._ids[k];
            const x = coords[2 * i];
            const y = coords[2 * i + 1];

            // skip near-duplicate points
            if (k > 0 && Math.abs(x - xp) <= EPSILON && Math.abs(y - yp) <= EPSILON) continue;
            xp = x;
            yp = y;

            // skip seed triangle points
            if (i === i0 || i === i1 || i === i2) continue;

            // find a visible edge on the convex hull using edge hash
            let start = 0;
            for (let j = 0, key = this._hashKey(x, y); j < this._hashSize; j++) {
                start = hullHash[(key + j) % this._hashSize];
                if (start !== -1 && start !== hullNext[start]) break;
            }

            start = hullPrev[start];
            let e = start, q;
            while (q = hullNext[e], orient2d(x, y, coords[2 * e], coords[2 * e + 1], coords[2 * q], coords[2 * q + 1]) >= 0) {
                e = q;
                if (e === start) {
                    e = -1;
                    break;
                }
            }
            if (e === -1) continue; // likely a near-duplicate point; skip it

            // add the first triangle from the point
            let t = this._addTriangle(e, i, hullNext[e], -1, -1, hullTri[e]);

            // recursively flip triangles from the point until they satisfy the Delaunay condition
            hullTri[i] = this._legalize(t + 2);
            hullTri[e] = t; // keep track of boundary triangles on the hull
            hullSize++;

            // walk forward through the hull, adding more triangles and flipping recursively
            let n = hullNext[e];
            while (q = hullNext[n], orient2d(x, y, coords[2 * n], coords[2 * n + 1], coords[2 * q], coords[2 * q + 1]) < 0) {
                t = this._addTriangle(n, i, q, hullTri[i], -1, hullTri[n]);
                hullTri[i] = this._legalize(t + 2);
                hullNext[n] = n; // mark as removed
                hullSize--;
                n = q;
            }

            // walk backward from the other side, adding more triangles and flipping
            if (e === start) {
                while (q = hullPrev[e], orient2d(x, y, coords[2 * q], coords[2 * q + 1], coords[2 * e], coords[2 * e + 1]) < 0) {
                    t = this._addTriangle(q, i, e, -1, hullTri[e], hullTri[q]);
                    this._legalize(t + 2);
                    hullTri[q] = t;
                    hullNext[e] = e; // mark as removed
                    hullSize--;
                    e = q;
                }
            }

            // update the hull indices
            this._hullStart = hullPrev[i] = e;
            hullNext[e] = hullPrev[n] = i;
            hullNext[i] = n;

            // save the two new edges in the hash table
            hullHash[this._hashKey(x, y)] = i;
            hullHash[this._hashKey(coords[2 * e], coords[2 * e + 1])] = e;
        }

        this.hull = new Uint32Array(hullSize);
        for (let i = 0, e = this._hullStart; i < hullSize; i++) {
            this.hull[i] = e;
            e = hullNext[e];
        }

        // trim typed triangle mesh arrays
        this.triangles = this._triangles.subarray(0, this.trianglesLen);
        this.halfedges = this._halfedges.subarray(0, this.trianglesLen);
    }

    _hashKey(x, y) {
        return Math.floor(pseudoAngle(x - this._cx, y - this._cy) * this._hashSize) % this._hashSize;
    }

    _legalize(a) {
        const {_triangles: triangles, _halfedges: halfedges, coords} = this;

        let i = 0;
        let ar = 0;

        // recursion eliminated with a fixed-size stack
        while (true) {
            const b = halfedges[a];

            /* if the pair of triangles doesn't satisfy the Delaunay condition
             * (p1 is inside the circumcircle of [p0, pl, pr]), flip them,
             * then do the same check/flip recursively for the new pair of triangles
             *
             *           pl                    pl
             *          /||\                  /  \
             *       al/ || \bl            al/    \a
             *        /  ||  \              /      \
             *       /  a||b  \    flip    /___ar___\
             *     p0\   ||   /p1   =>   p0\---bl---/p1
             *        \  ||  /              \      /
             *       ar\ || /br             b\    /br
             *          \||/                  \  /
             *           pr                    pr
             */
            const a0 = a - a % 3;
            ar = a0 + (a + 2) % 3;

            if (b === -1) { // convex hull edge
                if (i === 0) break;
                a = EDGE_STACK[--i];
                continue;
            }

            const b0 = b - b % 3;
            const al = a0 + (a + 1) % 3;
            const bl = b0 + (b + 2) % 3;

            const p0 = triangles[ar];
            const pr = triangles[a];
            const pl = triangles[al];
            const p1 = triangles[bl];

            const illegal = inCircle(
                coords[2 * p0], coords[2 * p0 + 1],
                coords[2 * pr], coords[2 * pr + 1],
                coords[2 * pl], coords[2 * pl + 1],
                coords[2 * p1], coords[2 * p1 + 1]);

            if (illegal) {
                triangles[a] = p1;
                triangles[b] = p0;

                const hbl = halfedges[bl];

                // edge swapped on the other side of the hull (rare); fix the halfedge reference
                if (hbl === -1) {
                    let e = this._hullStart;
                    do {
                        if (this._hullTri[e] === bl) {
                            this._hullTri[e] = a;
                            break;
                        }
                        e = this._hullPrev[e];
                    } while (e !== this._hullStart);
                }
                this._link(a, hbl);
                this._link(b, halfedges[ar]);
                this._link(ar, bl);

                const br = b0 + (b + 1) % 3;

                // don't worry about hitting the cap: it can only happen on extremely degenerate input
                if (i < EDGE_STACK.length) {
                    EDGE_STACK[i++] = br;
                }
            } else {
                if (i === 0) break;
                a = EDGE_STACK[--i];
            }
        }

        return ar;
    }

    _link(a, b) {
        this._halfedges[a] = b;
        if (b !== -1) this._halfedges[b] = a;
    }

    // add a new triangle given vertex indices and adjacent half-edge ids
    _addTriangle(i0, i1, i2, a, b, c) {
        const t = this.trianglesLen;

        this._triangles[t] = i0;
        this._triangles[t + 1] = i1;
        this._triangles[t + 2] = i2;

        this._link(t, a);
        this._link(t + 1, b);
        this._link(t + 2, c);

        this.trianglesLen += 3;

        return t;
    }
}

// monotonically increases with real angle, but doesn't need expensive trigonometry
function pseudoAngle(dx, dy) {
    const p = dx / (Math.abs(dx) + Math.abs(dy));
    return (dy > 0 ? 3 - p : 1 + p) / 4; // [0..1]
}

function dist(ax, ay, bx, by) {
    const dx = ax - bx;
    const dy = ay - by;
    return dx * dx + dy * dy;
}

function inCircle(ax, ay, bx, by, cx, cy, px, py) {
    const dx = ax - px;
    const dy = ay - py;
    const ex = bx - px;
    const ey = by - py;
    const fx = cx - px;
    const fy = cy - py;

    const ap = dx * dx + dy * dy;
    const bp = ex * ex + ey * ey;
    const cp = fx * fx + fy * fy;

    return dx * (ey * cp - bp * fy) -
           dy * (ex * cp - bp * fx) +
           ap * (ex * fy - ey * fx) < 0;
}

function circumradius(ax, ay, bx, by, cx, cy) {
    const dx = bx - ax;
    const dy = by - ay;
    const ex = cx - ax;
    const ey = cy - ay;

    const bl = dx * dx + dy * dy;
    const cl = ex * ex + ey * ey;
    const d = 0.5 / (dx * ey - dy * ex);

    const x = (ey * bl - dy * cl) * d;
    const y = (dx * cl - ex * bl) * d;

    return x * x + y * y;
}

function circumcenter(ax, ay, bx, by, cx, cy) {
    const dx = bx - ax;
    const dy = by - ay;
    const ex = cx - ax;
    const ey = cy - ay;

    const bl = dx * dx + dy * dy;
    const cl = ex * ex + ey * ey;
    const d = 0.5 / (dx * ey - dy * ex);

    const x = ax + (ey * bl - dy * cl) * d;
    const y = ay + (dx * cl - ex * bl) * d;

    return {x, y};
}

function quicksort(ids, dists, left, right) {
    if (right - left <= 20) {
        for (let i = left + 1; i <= right; i++) {
            const temp = ids[i];
            const tempDist = dists[temp];
            let j = i - 1;
            while (j >= left && dists[ids[j]] > tempDist) ids[j + 1] = ids[j--];
            ids[j + 1] = temp;
        }
    } else {
        const median = (left + right) >> 1;
        let i = left + 1;
        let j = right;
        swap(ids, median, i);
        if (dists[ids[left]] > dists[ids[right]]) swap(ids, left, right);
        if (dists[ids[i]] > dists[ids[right]]) swap(ids, i, right);
        if (dists[ids[left]] > dists[ids[i]]) swap(ids, left, i);

        const temp = ids[i];
        const tempDist = dists[temp];
        while (true) {
            do i++; while (dists[ids[i]] < tempDist);
            do j--; while (dists[ids[j]] > tempDist);
            if (j < i) break;
            swap(ids, i, j);
        }
        ids[left + 1] = ids[j];
        ids[j] = temp;

        if (right - i + 1 >= j - left) {
            quicksort(ids, dists, i, right);
            quicksort(ids, dists, left, j - 1);
        } else {
            quicksort(ids, dists, left, j - 1);
            quicksort(ids, dists, i, right);
        }
    }
}

function swap(arr, i, j) {
    const tmp = arr[i];
    arr[i] = arr[j];
    arr[j] = tmp;
}

function defaultGetX(p) {
    return p[0];
}
function defaultGetY(p) {
    return p[1];
}

const epsilon = 1e-6;

class Path {
  constructor() {
    this._x0 = this._y0 = // start of current subpath
    this._x1 = this._y1 = null; // end of current subpath
    this._ = "";
  }
  moveTo(x, y) {
    this._ += `M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}`;
  }
  closePath() {
    if (this._x1 !== null) {
      this._x1 = this._x0, this._y1 = this._y0;
      this._ += "Z";
    }
  }
  lineTo(x, y) {
    this._ += `L${this._x1 = +x},${this._y1 = +y}`;
  }
  arc(x, y, r) {
    x = +x, y = +y, r = +r;
    const x0 = x + r;
    const y0 = y;
    if (r < 0) throw new Error("negative radius");
    if (this._x1 === null) this._ += `M${x0},${y0}`;
    else if (Math.abs(this._x1 - x0) > epsilon || Math.abs(this._y1 - y0) > epsilon) this._ += "L" + x0 + "," + y0;
    if (!r) return;
    this._ += `A${r},${r},0,1,1,${x - r},${y}A${r},${r},0,1,1,${this._x1 = x0},${this._y1 = y0}`;
  }
  rect(x, y, w, h) {
    this._ += `M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}h${+w}v${+h}h${-w}Z`;
  }
  value() {
    return this._ || null;
  }
}

class Polygon {
  constructor() {
    this._ = [];
  }
  moveTo(x, y) {
    this._.push([x, y]);
  }
  closePath() {
    this._.push(this._[0].slice());
  }
  lineTo(x, y) {
    this._.push([x, y]);
  }
  value() {
    return this._.length ? this._ : null;
  }
}

class Voronoi {
  constructor(delaunay, [xmin, ymin, xmax, ymax] = [0, 0, 960, 500]) {
    if (!((xmax = +xmax) >= (xmin = +xmin)) || !((ymax = +ymax) >= (ymin = +ymin))) throw new Error("invalid bounds");
    this.delaunay = delaunay;
    this._circumcenters = new Float64Array(delaunay.points.length * 2);
    this.vectors = new Float64Array(delaunay.points.length * 2);
    this.xmax = xmax, this.xmin = xmin;
    this.ymax = ymax, this.ymin = ymin;
    this._init();
  }
  update() {
    this.delaunay.update();
    this._init();
    return this;
  }
  _init() {
    const {delaunay: {points, hull, triangles}, vectors} = this;
    let bx, by; // lazily computed barycenter of the hull

    // Compute circumcenters.
    const circumcenters = this.circumcenters = this._circumcenters.subarray(0, triangles.length / 3 * 2);
    for (let i = 0, j = 0, n = triangles.length, x, y; i < n; i += 3, j += 2) {
      const t1 = triangles[i] * 2;
      const t2 = triangles[i + 1] * 2;
      const t3 = triangles[i + 2] * 2;
      const x1 = points[t1];
      const y1 = points[t1 + 1];
      const x2 = points[t2];
      const y2 = points[t2 + 1];
      const x3 = points[t3];
      const y3 = points[t3 + 1];

      const dx = x2 - x1;
      const dy = y2 - y1;
      const ex = x3 - x1;
      const ey = y3 - y1;
      const ab = (dx * ey - dy * ex) * 2;

      if (Math.abs(ab) < 1e-9) {
        // For a degenerate triangle, the circumcenter is at the infinity, in a
        // direction orthogonal to the halfedge and away from the “center” of
        // the diagram <bx, by>, defined as the hull’s barycenter.
        if (bx === undefined) {
          bx = by = 0;
          for (const i of hull) bx += points[i * 2], by += points[i * 2 + 1];
          bx /= hull.length, by /= hull.length;
        }
        const a = 1e9 * Math.sign((bx - x1) * ey - (by - y1) * ex);
        x = (x1 + x3) / 2 - a * ey;
        y = (y1 + y3) / 2 + a * ex;
      } else {
        const d = 1 / ab;
        const bl = dx * dx + dy * dy;
        const cl = ex * ex + ey * ey;
        x = x1 + (ey * bl - dy * cl) * d;
        y = y1 + (dx * cl - ex * bl) * d;
      }
      circumcenters[j] = x;
      circumcenters[j + 1] = y;
    }

    // Compute exterior cell rays.
    let h = hull[hull.length - 1];
    let p0, p1 = h * 4;
    let x0, x1 = points[2 * h];
    let y0, y1 = points[2 * h + 1];
    vectors.fill(0);
    for (let i = 0; i < hull.length; ++i) {
      h = hull[i];
      p0 = p1, x0 = x1, y0 = y1;
      p1 = h * 4, x1 = points[2 * h], y1 = points[2 * h + 1];
      vectors[p0 + 2] = vectors[p1] = y0 - y1;
      vectors[p0 + 3] = vectors[p1 + 1] = x1 - x0;
    }
  }
  render(context) {
    const buffer = context == null ? context = new Path : undefined;
    const {delaunay: {halfedges, inedges, hull}, circumcenters, vectors} = this;
    if (hull.length <= 1) return null;
    for (let i = 0, n = halfedges.length; i < n; ++i) {
      const j = halfedges[i];
      if (j < i) continue;
      const ti = Math.floor(i / 3) * 2;
      const tj = Math.floor(j / 3) * 2;
      const xi = circumcenters[ti];
      const yi = circumcenters[ti + 1];
      const xj = circumcenters[tj];
      const yj = circumcenters[tj + 1];
      this._renderSegment(xi, yi, xj, yj, context);
    }
    let h0, h1 = hull[hull.length - 1];
    for (let i = 0; i < hull.length; ++i) {
      h0 = h1, h1 = hull[i];
      const t = Math.floor(inedges[h1] / 3) * 2;
      const x = circumcenters[t];
      const y = circumcenters[t + 1];
      const v = h0 * 4;
      const p = this._project(x, y, vectors[v + 2], vectors[v + 3]);
      if (p) this._renderSegment(x, y, p[0], p[1], context);
    }
    return buffer && buffer.value();
  }
  renderBounds(context) {
    const buffer = context == null ? context = new Path : undefined;
    context.rect(this.xmin, this.ymin, this.xmax - this.xmin, this.ymax - this.ymin);
    return buffer && buffer.value();
  }
  renderCell(i, context) {
    const buffer = context == null ? context = new Path : undefined;
    const points = this._clip(i);
    if (points === null || !points.length) return;
    context.moveTo(points[0], points[1]);
    let n = points.length;
    while (points[0] === points[n-2] && points[1] === points[n-1] && n > 1) n -= 2;
    for (let i = 2; i < n; i += 2) {
      if (points[i] !== points[i-2] || points[i+1] !== points[i-1])
        context.lineTo(points[i], points[i + 1]);
    }
    context.closePath();
    return buffer && buffer.value();
  }
  *cellPolygons() {
    const {delaunay: {points}} = this;
    for (let i = 0, n = points.length / 2; i < n; ++i) {
      const cell = this.cellPolygon(i);
      if (cell) cell.index = i, yield cell;
    }
  }
  cellPolygon(i) {
    const polygon = new Polygon;
    this.renderCell(i, polygon);
    return polygon.value();
  }
  _renderSegment(x0, y0, x1, y1, context) {
    let S;
    const c0 = this._regioncode(x0, y0);
    const c1 = this._regioncode(x1, y1);
    if (c0 === 0 && c1 === 0) {
      context.moveTo(x0, y0);
      context.lineTo(x1, y1);
    } else if (S = this._clipSegment(x0, y0, x1, y1, c0, c1)) {
      context.moveTo(S[0], S[1]);
      context.lineTo(S[2], S[3]);
    }
  }
  contains(i, x, y) {
    if ((x = +x, x !== x) || (y = +y, y !== y)) return false;
    return this.delaunay._step(i, x, y) === i;
  }
  *neighbors(i) {
    const ci = this._clip(i);
    if (ci) for (const j of this.delaunay.neighbors(i)) {
      const cj = this._clip(j);
      // find the common edge
      if (cj) loop: for (let ai = 0, li = ci.length; ai < li; ai += 2) {
        for (let aj = 0, lj = cj.length; aj < lj; aj += 2) {
          if (ci[ai] === cj[aj]
              && ci[ai + 1] === cj[aj + 1]
              && ci[(ai + 2) % li] === cj[(aj + lj - 2) % lj]
              && ci[(ai + 3) % li] === cj[(aj + lj - 1) % lj]) {
            yield j;
            break loop;
          }
        }
      }
    }
  }
  _cell(i) {
    const {circumcenters, delaunay: {inedges, halfedges, triangles}} = this;
    const e0 = inedges[i];
    if (e0 === -1) return null; // coincident point
    const points = [];
    let e = e0;
    do {
      const t = Math.floor(e / 3);
      points.push(circumcenters[t * 2], circumcenters[t * 2 + 1]);
      e = e % 3 === 2 ? e - 2 : e + 1;
      if (triangles[e] !== i) break; // bad triangulation
      e = halfedges[e];
    } while (e !== e0 && e !== -1);
    return points;
  }
  _clip(i) {
    // degenerate case (1 valid point: return the box)
    if (i === 0 && this.delaunay.hull.length === 1) {
      return [this.xmax, this.ymin, this.xmax, this.ymax, this.xmin, this.ymax, this.xmin, this.ymin];
    }
    const points = this._cell(i);
    if (points === null) return null;
    const {vectors: V} = this;
    const v = i * 4;
    return this._simplify(V[v] || V[v + 1]
        ? this._clipInfinite(i, points, V[v], V[v + 1], V[v + 2], V[v + 3])
        : this._clipFinite(i, points));
  }
  _clipFinite(i, points) {
    const n = points.length;
    let P = null;
    let x0, y0, x1 = points[n - 2], y1 = points[n - 1];
    let c0, c1 = this._regioncode(x1, y1);
    let e0, e1 = 0;
    for (let j = 0; j < n; j += 2) {
      x0 = x1, y0 = y1, x1 = points[j], y1 = points[j + 1];
      c0 = c1, c1 = this._regioncode(x1, y1);
      if (c0 === 0 && c1 === 0) {
        e0 = e1, e1 = 0;
        if (P) P.push(x1, y1);
        else P = [x1, y1];
      } else {
        let S, sx0, sy0, sx1, sy1;
        if (c0 === 0) {
          if ((S = this._clipSegment(x0, y0, x1, y1, c0, c1)) === null) continue;
          [sx0, sy0, sx1, sy1] = S;
        } else {
          if ((S = this._clipSegment(x1, y1, x0, y0, c1, c0)) === null) continue;
          [sx1, sy1, sx0, sy0] = S;
          e0 = e1, e1 = this._edgecode(sx0, sy0);
          if (e0 && e1) this._edge(i, e0, e1, P, P.length);
          if (P) P.push(sx0, sy0);
          else P = [sx0, sy0];
        }
        e0 = e1, e1 = this._edgecode(sx1, sy1);
        if (e0 && e1) this._edge(i, e0, e1, P, P.length);
        if (P) P.push(sx1, sy1);
        else P = [sx1, sy1];
      }
    }
    if (P) {
      e0 = e1, e1 = this._edgecode(P[0], P[1]);
      if (e0 && e1) this._edge(i, e0, e1, P, P.length);
    } else if (this.contains(i, (this.xmin + this.xmax) / 2, (this.ymin + this.ymax) / 2)) {
      return [this.xmax, this.ymin, this.xmax, this.ymax, this.xmin, this.ymax, this.xmin, this.ymin];
    }
    return P;
  }
  _clipSegment(x0, y0, x1, y1, c0, c1) {
    // for more robustness, always consider the segment in the same order
    const flip = c0 < c1;
    if (flip) [x0, y0, x1, y1, c0, c1] = [x1, y1, x0, y0, c1, c0];
    while (true) {
      if (c0 === 0 && c1 === 0) return flip ? [x1, y1, x0, y0] : [x0, y0, x1, y1];
      if (c0 & c1) return null;
      let x, y, c = c0 || c1;
      if (c & 0b1000) x = x0 + (x1 - x0) * (this.ymax - y0) / (y1 - y0), y = this.ymax;
      else if (c & 0b0100) x = x0 + (x1 - x0) * (this.ymin - y0) / (y1 - y0), y = this.ymin;
      else if (c & 0b0010) y = y0 + (y1 - y0) * (this.xmax - x0) / (x1 - x0), x = this.xmax;
      else y = y0 + (y1 - y0) * (this.xmin - x0) / (x1 - x0), x = this.xmin;
      if (c0) x0 = x, y0 = y, c0 = this._regioncode(x0, y0);
      else x1 = x, y1 = y, c1 = this._regioncode(x1, y1);
    }
  }
  _clipInfinite(i, points, vx0, vy0, vxn, vyn) {
    let P = Array.from(points), p;
    if (p = this._project(P[0], P[1], vx0, vy0)) P.unshift(p[0], p[1]);
    if (p = this._project(P[P.length - 2], P[P.length - 1], vxn, vyn)) P.push(p[0], p[1]);
    if (P = this._clipFinite(i, P)) {
      for (let j = 0, n = P.length, c0, c1 = this._edgecode(P[n - 2], P[n - 1]); j < n; j += 2) {
        c0 = c1, c1 = this._edgecode(P[j], P[j + 1]);
        if (c0 && c1) j = this._edge(i, c0, c1, P, j), n = P.length;
      }
    } else if (this.contains(i, (this.xmin + this.xmax) / 2, (this.ymin + this.ymax) / 2)) {
      P = [this.xmin, this.ymin, this.xmax, this.ymin, this.xmax, this.ymax, this.xmin, this.ymax];
    }
    return P;
  }
  _edge(i, e0, e1, P, j) {
    while (e0 !== e1) {
      let x, y;
      switch (e0) {
        case 0b0101: e0 = 0b0100; continue; // top-left
        case 0b0100: e0 = 0b0110, x = this.xmax, y = this.ymin; break; // top
        case 0b0110: e0 = 0b0010; continue; // top-right
        case 0b0010: e0 = 0b1010, x = this.xmax, y = this.ymax; break; // right
        case 0b1010: e0 = 0b1000; continue; // bottom-right
        case 0b1000: e0 = 0b1001, x = this.xmin, y = this.ymax; break; // bottom
        case 0b1001: e0 = 0b0001; continue; // bottom-left
        case 0b0001: e0 = 0b0101, x = this.xmin, y = this.ymin; break; // left
      }
      // Note: this implicitly checks for out of bounds: if P[j] or P[j+1] are
      // undefined, the conditional statement will be executed.
      if ((P[j] !== x || P[j + 1] !== y) && this.contains(i, x, y)) {
        P.splice(j, 0, x, y), j += 2;
      }
    }
    return j;
  }
  _project(x0, y0, vx, vy) {
    let t = Infinity, c, x, y;
    if (vy < 0) { // top
      if (y0 <= this.ymin) return null;
      if ((c = (this.ymin - y0) / vy) < t) y = this.ymin, x = x0 + (t = c) * vx;
    } else if (vy > 0) { // bottom
      if (y0 >= this.ymax) return null;
      if ((c = (this.ymax - y0) / vy) < t) y = this.ymax, x = x0 + (t = c) * vx;
    }
    if (vx > 0) { // right
      if (x0 >= this.xmax) return null;
      if ((c = (this.xmax - x0) / vx) < t) x = this.xmax, y = y0 + (t = c) * vy;
    } else if (vx < 0) { // left
      if (x0 <= this.xmin) return null;
      if ((c = (this.xmin - x0) / vx) < t) x = this.xmin, y = y0 + (t = c) * vy;
    }
    return [x, y];
  }
  _edgecode(x, y) {
    return (x === this.xmin ? 0b0001
        : x === this.xmax ? 0b0010 : 0b0000)
        | (y === this.ymin ? 0b0100
        : y === this.ymax ? 0b1000 : 0b0000);
  }
  _regioncode(x, y) {
    return (x < this.xmin ? 0b0001
        : x > this.xmax ? 0b0010 : 0b0000)
        | (y < this.ymin ? 0b0100
        : y > this.ymax ? 0b1000 : 0b0000);
  }
  _simplify(P) {
    if (P && P.length > 4) {
      for (let i = 0; i < P.length; i+= 2) {
        const j = (i + 2) % P.length, k = (i + 4) % P.length;
        if (P[i] === P[j] && P[j] === P[k] || P[i + 1] === P[j + 1] && P[j + 1] === P[k + 1]) {
          P.splice(j, 2), i -= 2;
        }
      }
      if (!P.length) P = null;
    }
    return P;
  }
}

const tau = 2 * Math.PI, pow = Math.pow;

function pointX(p) {
  return p[0];
}

function pointY(p) {
  return p[1];
}

// A triangulation is collinear if all its triangles have a non-null area
function collinear(d) {
  const {triangles, coords} = d;
  for (let i = 0; i < triangles.length; i += 3) {
    const a = 2 * triangles[i],
          b = 2 * triangles[i + 1],
          c = 2 * triangles[i + 2],
          cross = (coords[c] - coords[a]) * (coords[b + 1] - coords[a + 1])
                - (coords[b] - coords[a]) * (coords[c + 1] - coords[a + 1]);
    if (cross > 1e-10) return false;
  }
  return true;
}

function jitter(x, y, r) {
  return [x + Math.sin(x + y) * r, y + Math.cos(x - y) * r];
}

class Delaunay {
  static from(points, fx = pointX, fy = pointY, that) {
    return new Delaunay("length" in points
        ? flatArray(points, fx, fy, that)
        : Float64Array.from(flatIterable(points, fx, fy, that)));
  }
  constructor(points) {
    this._delaunator = new Delaunator(points);
    this.inedges = new Int32Array(points.length / 2);
    this._hullIndex = new Int32Array(points.length / 2);
    this.points = this._delaunator.coords;
    this._init();
  }
  update() {
    this._delaunator.update();
    this._init();
    return this;
  }
  _init() {
    const d = this._delaunator, points = this.points;

    // check for collinear
    if (d.hull && d.hull.length > 2 && collinear(d)) {
      this.collinear = Int32Array.from({length: points.length/2}, (_,i) => i)
        .sort((i, j) => points[2 * i] - points[2 * j] || points[2 * i + 1] - points[2 * j + 1]); // for exact neighbors
      const e = this.collinear[0], f = this.collinear[this.collinear.length - 1],
        bounds = [ points[2 * e], points[2 * e + 1], points[2 * f], points[2 * f + 1] ],
        r = 1e-8 * Math.hypot(bounds[3] - bounds[1], bounds[2] - bounds[0]);
      for (let i = 0, n = points.length / 2; i < n; ++i) {
        const p = jitter(points[2 * i], points[2 * i + 1], r);
        points[2 * i] = p[0];
        points[2 * i + 1] = p[1];
      }
      this._delaunator = new Delaunator(points);
    } else {
      delete this.collinear;
    }

    const halfedges = this.halfedges = this._delaunator.halfedges;
    const hull = this.hull = this._delaunator.hull;
    const triangles = this.triangles = this._delaunator.triangles;
    const inedges = this.inedges.fill(-1);
    const hullIndex = this._hullIndex.fill(-1);

    // Compute an index from each point to an (arbitrary) incoming halfedge
    // Used to give the first neighbor of each point; for this reason,
    // on the hull we give priority to exterior halfedges
    for (let e = 0, n = halfedges.length; e < n; ++e) {
      const p = triangles[e % 3 === 2 ? e - 2 : e + 1];
      if (halfedges[e] === -1 || inedges[p] === -1) inedges[p] = e;
    }
    for (let i = 0, n = hull.length; i < n; ++i) {
      hullIndex[hull[i]] = i;
    }

    // degenerate case: 1 or 2 (distinct) points
    if (hull.length <= 2 && hull.length > 0) {
      this.triangles = new Int32Array(3).fill(-1);
      this.halfedges = new Int32Array(3).fill(-1);
      this.triangles[0] = hull[0];
      inedges[hull[0]] = 1;
      if (hull.length === 2) {
        inedges[hull[1]] = 0;
        this.triangles[1] = hull[1];
        this.triangles[2] = hull[1];
      }
    }
  }
  voronoi(bounds) {
    return new Voronoi(this, bounds);
  }
  *neighbors(i) {
    const {inedges, hull, _hullIndex, halfedges, triangles, collinear} = this;

    // degenerate case with several collinear points
    if (collinear) {
      const l = collinear.indexOf(i);
      if (l > 0) yield collinear[l - 1];
      if (l < collinear.length - 1) yield collinear[l + 1];
      return;
    }

    const e0 = inedges[i];
    if (e0 === -1) return; // coincident point
    let e = e0, p0 = -1;
    do {
      yield p0 = triangles[e];
      e = e % 3 === 2 ? e - 2 : e + 1;
      if (triangles[e] !== i) return; // bad triangulation
      e = halfedges[e];
      if (e === -1) {
        const p = hull[(_hullIndex[i] + 1) % hull.length];
        if (p !== p0) yield p;
        return;
      }
    } while (e !== e0);
  }
  find(x, y, i = 0) {
    if ((x = +x, x !== x) || (y = +y, y !== y)) return -1;
    const i0 = i;
    let c;
    while ((c = this._step(i, x, y)) >= 0 && c !== i && c !== i0) i = c;
    return c;
  }
  _step(i, x, y) {
    const {inedges, hull, _hullIndex, halfedges, triangles, points} = this;
    if (inedges[i] === -1 || !points.length) return (i + 1) % (points.length >> 1);
    let c = i;
    let dc = pow(x - points[i * 2], 2) + pow(y - points[i * 2 + 1], 2);
    const e0 = inedges[i];
    let e = e0;
    do {
      let t = triangles[e];
      const dt = pow(x - points[t * 2], 2) + pow(y - points[t * 2 + 1], 2);
      if (dt < dc) dc = dt, c = t;
      e = e % 3 === 2 ? e - 2 : e + 1;
      if (triangles[e] !== i) break; // bad triangulation
      e = halfedges[e];
      if (e === -1) {
        e = hull[(_hullIndex[i] + 1) % hull.length];
        if (e !== t) {
          if (pow(x - points[e * 2], 2) + pow(y - points[e * 2 + 1], 2) < dc) return e;
        }
        break;
      }
    } while (e !== e0);
    return c;
  }
  render(context) {
    const buffer = context == null ? context = new Path : undefined;
    const {points, halfedges, triangles} = this;
    for (let i = 0, n = halfedges.length; i < n; ++i) {
      const j = halfedges[i];
      if (j < i) continue;
      const ti = triangles[i] * 2;
      const tj = triangles[j] * 2;
      context.moveTo(points[ti], points[ti + 1]);
      context.lineTo(points[tj], points[tj + 1]);
    }
    this.renderHull(context);
    return buffer && buffer.value();
  }
  renderPoints(context, r) {
    if (r === undefined && (!context || typeof context.moveTo !== "function")) r = context, context = null;
    r = r == undefined ? 2 : +r;
    const buffer = context == null ? context = new Path : undefined;
    const {points} = this;
    for (let i = 0, n = points.length; i < n; i += 2) {
      const x = points[i], y = points[i + 1];
      context.moveTo(x + r, y);
      context.arc(x, y, r, 0, tau);
    }
    return buffer && buffer.value();
  }
  renderHull(context) {
    const buffer = context == null ? context = new Path : undefined;
    const {hull, points} = this;
    const h = hull[0] * 2, n = hull.length;
    context.moveTo(points[h], points[h + 1]);
    for (let i = 1; i < n; ++i) {
      const h = 2 * hull[i];
      context.lineTo(points[h], points[h + 1]);
    }
    context.closePath();
    return buffer && buffer.value();
  }
  hullPolygon() {
    const polygon = new Polygon;
    this.renderHull(polygon);
    return polygon.value();
  }
  renderTriangle(i, context) {
    const buffer = context == null ? context = new Path : undefined;
    const {points, triangles} = this;
    const t0 = triangles[i *= 3] * 2;
    const t1 = triangles[i + 1] * 2;
    const t2 = triangles[i + 2] * 2;
    context.moveTo(points[t0], points[t0 + 1]);
    context.lineTo(points[t1], points[t1 + 1]);
    context.lineTo(points[t2], points[t2 + 1]);
    context.closePath();
    return buffer && buffer.value();
  }
  *trianglePolygons() {
    const {triangles} = this;
    for (let i = 0, n = triangles.length / 3; i < n; ++i) {
      yield this.trianglePolygon(i);
    }
  }
  trianglePolygon(i) {
    const polygon = new Polygon;
    this.renderTriangle(i, polygon);
    return polygon.value();
  }
}

function flatArray(points, fx, fy, that) {
  const n = points.length;
  const array = new Float64Array(n * 2);
  for (let i = 0; i < n; ++i) {
    const p = points[i];
    array[i * 2] = fx.call(that, p, i, points);
    array[i * 2 + 1] = fy.call(that, p, i, points);
  }
  return array;
}

function* flatIterable(points, fx, fy, that) {
  let i = 0;
  for (const p of points) {
    yield fx.call(that, p, i, points);
    yield fy.call(that, p, i, points);
    ++i;
  }
}

exports.Delaunay = Delaunay;
exports.Voronoi = Voronoi;

Object.defineProperty(exports, '__esModule', { value: true });

})));