HEX
Server: nginx/1.24.0
System: Linux nowruzgan 6.8.0-57-generic #59-Ubuntu SMP PREEMPT_DYNAMIC Sat Mar 15 17:40:59 UTC 2025 x86_64
User: babak (1000)
PHP: 8.3.6
Disabled: NONE
Upload Files
File: /var/dev/math/ui/node_modules/d3-hierarchy/src/tree.js
import {Node} from "./hierarchy/index.js";

function defaultSeparation(a, b) {
  return a.parent === b.parent ? 1 : 2;
}

// function radialSeparation(a, b) {
//   return (a.parent === b.parent ? 1 : 2) / a.depth;
// }

// This function is used to traverse the left contour of a subtree (or
// subforest). It returns the successor of v on this contour. This successor is
// either given by the leftmost child of v or by the thread of v. The function
// returns null if and only if v is on the highest level of its subtree.
function nextLeft(v) {
  var children = v.children;
  return children ? children[0] : v.t;
}

// This function works analogously to nextLeft.
function nextRight(v) {
  var children = v.children;
  return children ? children[children.length - 1] : v.t;
}

// Shifts the current subtree rooted at w+. This is done by increasing
// prelim(w+) and mod(w+) by shift.
function moveSubtree(wm, wp, shift) {
  var change = shift / (wp.i - wm.i);
  wp.c -= change;
  wp.s += shift;
  wm.c += change;
  wp.z += shift;
  wp.m += shift;
}

// All other shifts, applied to the smaller subtrees between w- and w+, are
// performed by this function. To prepare the shifts, we have to adjust
// change(w+), shift(w+), and change(w-).
function executeShifts(v) {
  var shift = 0,
      change = 0,
      children = v.children,
      i = children.length,
      w;
  while (--i >= 0) {
    w = children[i];
    w.z += shift;
    w.m += shift;
    shift += w.s + (change += w.c);
  }
}

// If vi-’s ancestor is a sibling of v, returns vi-’s ancestor. Otherwise,
// returns the specified (default) ancestor.
function nextAncestor(vim, v, ancestor) {
  return vim.a.parent === v.parent ? vim.a : ancestor;
}

function TreeNode(node, i) {
  this._ = node;
  this.parent = null;
  this.children = null;
  this.A = null; // default ancestor
  this.a = this; // ancestor
  this.z = 0; // prelim
  this.m = 0; // mod
  this.c = 0; // change
  this.s = 0; // shift
  this.t = null; // thread
  this.i = i; // number
}

TreeNode.prototype = Object.create(Node.prototype);

function treeRoot(root) {
  var tree = new TreeNode(root, 0),
      node,
      nodes = [tree],
      child,
      children,
      i,
      n;

  while (node = nodes.pop()) {
    if (children = node._.children) {
      node.children = new Array(n = children.length);
      for (i = n - 1; i >= 0; --i) {
        nodes.push(child = node.children[i] = new TreeNode(children[i], i));
        child.parent = node;
      }
    }
  }

  (tree.parent = new TreeNode(null, 0)).children = [tree];
  return tree;
}

// Node-link tree diagram using the Reingold-Tilford "tidy" algorithm
export default function() {
  var separation = defaultSeparation,
      dx = 1,
      dy = 1,
      nodeSize = null;

  function tree(root) {
    var t = treeRoot(root);

    // Compute the layout using Buchheim et al.’s algorithm.
    t.eachAfter(firstWalk), t.parent.m = -t.z;
    t.eachBefore(secondWalk);

    // If a fixed node size is specified, scale x and y.
    if (nodeSize) root.eachBefore(sizeNode);

    // If a fixed tree size is specified, scale x and y based on the extent.
    // Compute the left-most, right-most, and depth-most nodes for extents.
    else {
      var left = root,
          right = root,
          bottom = root;
      root.eachBefore(function(node) {
        if (node.x < left.x) left = node;
        if (node.x > right.x) right = node;
        if (node.depth > bottom.depth) bottom = node;
      });
      var s = left === right ? 1 : separation(left, right) / 2,
          tx = s - left.x,
          kx = dx / (right.x + s + tx),
          ky = dy / (bottom.depth || 1);
      root.eachBefore(function(node) {
        node.x = (node.x + tx) * kx;
        node.y = node.depth * ky;
      });
    }

    return root;
  }

  // Computes a preliminary x-coordinate for v. Before that, FIRST WALK is
  // applied recursively to the children of v, as well as the function
  // APPORTION. After spacing out the children by calling EXECUTE SHIFTS, the
  // node v is placed to the midpoint of its outermost children.
  function firstWalk(v) {
    var children = v.children,
        siblings = v.parent.children,
        w = v.i ? siblings[v.i - 1] : null;
    if (children) {
      executeShifts(v);
      var midpoint = (children[0].z + children[children.length - 1].z) / 2;
      if (w) {
        v.z = w.z + separation(v._, w._);
        v.m = v.z - midpoint;
      } else {
        v.z = midpoint;
      }
    } else if (w) {
      v.z = w.z + separation(v._, w._);
    }
    v.parent.A = apportion(v, w, v.parent.A || siblings[0]);
  }

  // Computes all real x-coordinates by summing up the modifiers recursively.
  function secondWalk(v) {
    v._.x = v.z + v.parent.m;
    v.m += v.parent.m;
  }

  // The core of the algorithm. Here, a new subtree is combined with the
  // previous subtrees. Threads are used to traverse the inside and outside
  // contours of the left and right subtree up to the highest common level. The
  // vertices used for the traversals are vi+, vi-, vo-, and vo+, where the
  // superscript o means outside and i means inside, the subscript - means left
  // subtree and + means right subtree. For summing up the modifiers along the
  // contour, we use respective variables si+, si-, so-, and so+. Whenever two
  // nodes of the inside contours conflict, we compute the left one of the
  // greatest uncommon ancestors using the function ANCESTOR and call MOVE
  // SUBTREE to shift the subtree and prepare the shifts of smaller subtrees.
  // Finally, we add a new thread (if necessary).
  function apportion(v, w, ancestor) {
    if (w) {
      var vip = v,
          vop = v,
          vim = w,
          vom = vip.parent.children[0],
          sip = vip.m,
          sop = vop.m,
          sim = vim.m,
          som = vom.m,
          shift;
      while (vim = nextRight(vim), vip = nextLeft(vip), vim && vip) {
        vom = nextLeft(vom);
        vop = nextRight(vop);
        vop.a = v;
        shift = vim.z + sim - vip.z - sip + separation(vim._, vip._);
        if (shift > 0) {
          moveSubtree(nextAncestor(vim, v, ancestor), v, shift);
          sip += shift;
          sop += shift;
        }
        sim += vim.m;
        sip += vip.m;
        som += vom.m;
        sop += vop.m;
      }
      if (vim && !nextRight(vop)) {
        vop.t = vim;
        vop.m += sim - sop;
      }
      if (vip && !nextLeft(vom)) {
        vom.t = vip;
        vom.m += sip - som;
        ancestor = v;
      }
    }
    return ancestor;
  }

  function sizeNode(node) {
    node.x *= dx;
    node.y = node.depth * dy;
  }

  tree.separation = function(x) {
    return arguments.length ? (separation = x, tree) : separation;
  };

  tree.size = function(x) {
    return arguments.length ? (nodeSize = false, dx = +x[0], dy = +x[1], tree) : (nodeSize ? null : [dx, dy]);
  };

  tree.nodeSize = function(x) {
    return arguments.length ? (nodeSize = true, dx = +x[0], dy = +x[1], tree) : (nodeSize ? [dx, dy] : null);
  };

  return tree;
}