File: /var/dev/nowruzgan/travelogue/node_modules/ol/geom/Polygon.js
/**
* @module ol/geom/Polygon
*/
import {extend} from '../array.js';
import {closestSquaredDistanceXY, getCenter, isEmpty} from '../extent.js';
import {modulo} from '../math.js';
import {offset as sphereOffset} from '../sphere.js';
import LinearRing from './LinearRing.js';
import Point from './Point.js';
import SimpleGeometry from './SimpleGeometry.js';
import {linearRings as linearRingsArea} from './flat/area.js';
import {arrayMaxSquaredDelta, assignClosestArrayPoint} from './flat/closest.js';
import {linearRingsContainsXY} from './flat/contains.js';
import {deflateCoordinatesArray} from './flat/deflate.js';
import {inflateCoordinatesArray} from './flat/inflate.js';
import {getInteriorPointOfArray} from './flat/interiorpoint.js';
import {intersectsLinearRingArray} from './flat/intersectsextent.js';
import {linearRingsAreOriented, orientLinearRings} from './flat/orient.js';
import {quantizeArray} from './flat/simplify.js';
/**
* @classdesc
* Polygon geometry.
*
* @api
*/
class Polygon extends SimpleGeometry {
/**
* @param {!Array<Array<import("../coordinate.js").Coordinate>>|!Array<number>} coordinates
* Array of linear rings that define the polygon. The first linear ring of the
* array defines the outer-boundary or surface of the polygon. Each subsequent
* linear ring defines a hole in the surface of the polygon. A linear ring is
* an array of vertices' coordinates where the first coordinate and the last are
* equivalent. (For internal use, flat coordinates in combination with
* `layout` and `ends` are also accepted.)
* @param {import("./Geometry.js").GeometryLayout} [layout] Layout.
* @param {Array<number>} [ends] Ends (for internal use with flat coordinates).
*/
constructor(coordinates, layout, ends) {
super();
/**
* @type {Array<number>}
* @private
*/
this.ends_ = [];
/**
* @private
* @type {number}
*/
this.flatInteriorPointRevision_ = -1;
/**
* @private
* @type {import("../coordinate.js").Coordinate|null}
*/
this.flatInteriorPoint_ = null;
/**
* @private
* @type {number}
*/
this.maxDelta_ = -1;
/**
* @private
* @type {number}
*/
this.maxDeltaRevision_ = -1;
/**
* @private
* @type {number}
*/
this.orientedRevision_ = -1;
/**
* @private
* @type {Array<number>|null}
*/
this.orientedFlatCoordinates_ = null;
if (layout !== undefined && ends) {
this.setFlatCoordinates(
layout,
/** @type {Array<number>} */ (coordinates),
);
this.ends_ = ends;
} else {
this.setCoordinates(
/** @type {Array<Array<import("../coordinate.js").Coordinate>>} */ (
coordinates
),
layout,
);
}
}
/**
* Append the passed linear ring to this polygon.
* @param {LinearRing} linearRing Linear ring.
* @api
*/
appendLinearRing(linearRing) {
if (!this.flatCoordinates) {
this.flatCoordinates = linearRing.getFlatCoordinates().slice();
} else {
extend(this.flatCoordinates, linearRing.getFlatCoordinates());
}
this.ends_.push(this.flatCoordinates.length);
this.changed();
}
/**
* Make a complete copy of the geometry.
* @return {!Polygon} Clone.
* @api
* @override
*/
clone() {
const polygon = new Polygon(
this.flatCoordinates.slice(),
this.layout,
this.ends_.slice(),
);
polygon.applyProperties(this);
return polygon;
}
/**
* @param {number} x X.
* @param {number} y Y.
* @param {import("../coordinate.js").Coordinate} closestPoint Closest point.
* @param {number} minSquaredDistance Minimum squared distance.
* @return {number} Minimum squared distance.
* @override
*/
closestPointXY(x, y, closestPoint, minSquaredDistance) {
if (minSquaredDistance < closestSquaredDistanceXY(this.getExtent(), x, y)) {
return minSquaredDistance;
}
if (this.maxDeltaRevision_ != this.getRevision()) {
this.maxDelta_ = Math.sqrt(
arrayMaxSquaredDelta(
this.flatCoordinates,
0,
this.ends_,
this.stride,
0,
),
);
this.maxDeltaRevision_ = this.getRevision();
}
return assignClosestArrayPoint(
this.flatCoordinates,
0,
this.ends_,
this.stride,
this.maxDelta_,
true,
x,
y,
closestPoint,
minSquaredDistance,
);
}
/**
* @param {number} x X.
* @param {number} y Y.
* @return {boolean} Contains (x, y).
* @override
*/
containsXY(x, y) {
return linearRingsContainsXY(
this.getOrientedFlatCoordinates(),
0,
this.ends_,
this.stride,
x,
y,
);
}
/**
* Return the area of the polygon on projected plane.
* @return {number} Area (on projected plane).
* @api
*/
getArea() {
return linearRingsArea(
this.getOrientedFlatCoordinates(),
0,
this.ends_,
this.stride,
);
}
/**
* Get the coordinate array for this geometry. This array has the structure
* of a GeoJSON coordinate array for polygons.
*
* @param {boolean} [right] Orient coordinates according to the right-hand
* rule (counter-clockwise for exterior and clockwise for interior rings).
* If `false`, coordinates will be oriented according to the left-hand rule
* (clockwise for exterior and counter-clockwise for interior rings).
* By default, coordinate orientation will depend on how the geometry was
* constructed.
* @return {Array<Array<import("../coordinate.js").Coordinate>>} Coordinates.
* @api
* @override
*/
getCoordinates(right) {
let flatCoordinates;
if (right !== undefined) {
flatCoordinates = this.getOrientedFlatCoordinates().slice();
orientLinearRings(flatCoordinates, 0, this.ends_, this.stride, right);
} else {
flatCoordinates = this.flatCoordinates;
}
return inflateCoordinatesArray(flatCoordinates, 0, this.ends_, this.stride);
}
/**
* @return {Array<number>} Ends.
*/
getEnds() {
return this.ends_;
}
/**
* @return {Array<number>} Interior point.
*/
getFlatInteriorPoint() {
if (this.flatInteriorPointRevision_ != this.getRevision()) {
const flatCenter = getCenter(this.getExtent());
this.flatInteriorPoint_ = getInteriorPointOfArray(
this.getOrientedFlatCoordinates(),
0,
this.ends_,
this.stride,
flatCenter,
0,
);
this.flatInteriorPointRevision_ = this.getRevision();
}
return /** @type {import("../coordinate.js").Coordinate} */ (
this.flatInteriorPoint_
);
}
/**
* Return an interior point of the polygon.
* @return {Point} Interior point as XYM coordinate, where M is the
* length of the horizontal intersection that the point belongs to.
* @api
*/
getInteriorPoint() {
return new Point(this.getFlatInteriorPoint(), 'XYM');
}
/**
* Return the number of rings of the polygon, this includes the exterior
* ring and any interior rings.
*
* @return {number} Number of rings.
* @api
*/
getLinearRingCount() {
return this.ends_.length;
}
/**
* Return the Nth linear ring of the polygon geometry. Return `null` if the
* given index is out of range.
* The exterior linear ring is available at index `0` and the interior rings
* at index `1` and beyond.
*
* @param {number} index Index.
* @return {LinearRing|null} Linear ring.
* @api
*/
getLinearRing(index) {
if (index < 0 || this.ends_.length <= index) {
return null;
}
return new LinearRing(
this.flatCoordinates.slice(
index === 0 ? 0 : this.ends_[index - 1],
this.ends_[index],
),
this.layout,
);
}
/**
* Return the linear rings of the polygon.
* @return {Array<LinearRing>} Linear rings.
* @api
*/
getLinearRings() {
const layout = this.layout;
const flatCoordinates = this.flatCoordinates;
const ends = this.ends_;
const linearRings = [];
let offset = 0;
for (let i = 0, ii = ends.length; i < ii; ++i) {
const end = ends[i];
const linearRing = new LinearRing(
flatCoordinates.slice(offset, end),
layout,
);
linearRings.push(linearRing);
offset = end;
}
return linearRings;
}
/**
* @return {Array<number>} Oriented flat coordinates.
*/
getOrientedFlatCoordinates() {
if (this.orientedRevision_ != this.getRevision()) {
const flatCoordinates = this.flatCoordinates;
if (linearRingsAreOriented(flatCoordinates, 0, this.ends_, this.stride)) {
this.orientedFlatCoordinates_ = flatCoordinates;
} else {
this.orientedFlatCoordinates_ = flatCoordinates.slice();
this.orientedFlatCoordinates_.length = orientLinearRings(
this.orientedFlatCoordinates_,
0,
this.ends_,
this.stride,
);
}
this.orientedRevision_ = this.getRevision();
}
return /** @type {Array<number>} */ (this.orientedFlatCoordinates_);
}
/**
* @param {number} squaredTolerance Squared tolerance.
* @return {Polygon} Simplified Polygon.
* @protected
* @override
*/
getSimplifiedGeometryInternal(squaredTolerance) {
/** @type {Array<number>} */
const simplifiedFlatCoordinates = [];
/** @type {Array<number>} */
const simplifiedEnds = [];
simplifiedFlatCoordinates.length = quantizeArray(
this.flatCoordinates,
0,
this.ends_,
this.stride,
Math.sqrt(squaredTolerance),
simplifiedFlatCoordinates,
0,
simplifiedEnds,
);
return new Polygon(simplifiedFlatCoordinates, 'XY', simplifiedEnds);
}
/**
* Get the type of this geometry.
* @return {import("./Geometry.js").Type} Geometry type.
* @api
* @override
*/
getType() {
return 'Polygon';
}
/**
* Test if the geometry and the passed extent intersect.
* @param {import("../extent.js").Extent} extent Extent.
* @return {boolean} `true` if the geometry and the extent intersect.
* @api
* @override
*/
intersectsExtent(extent) {
return intersectsLinearRingArray(
this.getOrientedFlatCoordinates(),
0,
this.ends_,
this.stride,
extent,
);
}
/**
* Set the coordinates of the polygon.
* @param {!Array<Array<import("../coordinate.js").Coordinate>>} coordinates Coordinates.
* @param {import("./Geometry.js").GeometryLayout} [layout] Layout.
* @api
* @override
*/
setCoordinates(coordinates, layout) {
this.setLayout(layout, coordinates, 2);
if (!this.flatCoordinates) {
this.flatCoordinates = [];
}
const ends = deflateCoordinatesArray(
this.flatCoordinates,
0,
coordinates,
this.stride,
this.ends_,
);
this.flatCoordinates.length = ends.length === 0 ? 0 : ends[ends.length - 1];
this.changed();
}
}
export default Polygon;
/**
* Create an approximation of a circle on the surface of a sphere.
* @param {import("../coordinate.js").Coordinate} center Center (`[lon, lat]` in degrees).
* @param {number} radius The great-circle distance from the center to
* the polygon vertices in meters.
* @param {number} [n] Optional number of vertices for the resulting
* polygon. Default is `32`.
* @param {number} [sphereRadius] Optional radius for the sphere (defaults to
* the Earth's mean radius using the WGS84 ellipsoid).
* @return {Polygon} The "circular" polygon.
* @api
*/
export function circular(center, radius, n, sphereRadius) {
n = n ? n : 32;
/** @type {Array<number>} */
const flatCoordinates = [];
for (let i = 0; i < n; ++i) {
extend(
flatCoordinates,
sphereOffset(center, radius, (2 * Math.PI * i) / n, sphereRadius),
);
}
flatCoordinates.push(flatCoordinates[0], flatCoordinates[1]);
return new Polygon(flatCoordinates, 'XY', [flatCoordinates.length]);
}
/**
* Create a polygon from an extent. The layout used is `XY`.
* @param {import("../extent.js").Extent} extent The extent.
* @return {Polygon} The polygon.
* @api
*/
export function fromExtent(extent) {
if (isEmpty(extent)) {
throw new Error('Cannot create polygon from empty extent');
}
const minX = extent[0];
const minY = extent[1];
const maxX = extent[2];
const maxY = extent[3];
const flatCoordinates = [
minX,
minY,
minX,
maxY,
maxX,
maxY,
maxX,
minY,
minX,
minY,
];
return new Polygon(flatCoordinates, 'XY', [flatCoordinates.length]);
}
/**
* Create a regular polygon from a circle.
* @param {import("./Circle.js").default} circle Circle geometry.
* @param {number} [sides] Number of sides of the polygon. Default is 32.
* @param {number} [angle] Start angle for the first vertex of the polygon in
* counter-clockwise radians. 0 means East. Default is 0.
* @return {Polygon} Polygon geometry.
* @api
*/
export function fromCircle(circle, sides, angle) {
sides = sides ? sides : 32;
const stride = circle.getStride();
const layout = circle.getLayout();
const center = circle.getCenter();
const arrayLength = stride * (sides + 1);
const flatCoordinates = new Array(arrayLength);
for (let i = 0; i < arrayLength; i += stride) {
flatCoordinates[i] = 0;
flatCoordinates[i + 1] = 0;
for (let j = 2; j < stride; j++) {
flatCoordinates[i + j] = center[j];
}
}
const ends = [flatCoordinates.length];
const polygon = new Polygon(flatCoordinates, layout, ends);
makeRegular(polygon, center, circle.getRadius(), angle);
return polygon;
}
/**
* Modify the coordinates of a polygon to make it a regular polygon.
* @param {Polygon} polygon Polygon geometry.
* @param {import("../coordinate.js").Coordinate} center Center of the regular polygon.
* @param {number} radius Radius of the regular polygon.
* @param {number} [angle] Start angle for the first vertex of the polygon in
* counter-clockwise radians. 0 means East. Default is 0.
*/
export function makeRegular(polygon, center, radius, angle) {
const flatCoordinates = polygon.getFlatCoordinates();
const stride = polygon.getStride();
const sides = flatCoordinates.length / stride - 1;
const startAngle = angle ? angle : 0;
for (let i = 0; i <= sides; ++i) {
const offset = i * stride;
const angle = startAngle + (modulo(i, sides) * 2 * Math.PI) / sides;
flatCoordinates[offset] = center[0] + radius * Math.cos(angle);
flatCoordinates[offset + 1] = center[1] + radius * Math.sin(angle);
}
polygon.changed();
}