HEX
Server: nginx/1.24.0
System: Linux nowruzgan 6.8.0-57-generic #59-Ubuntu SMP PREEMPT_DYNAMIC Sat Mar 15 17:40:59 UTC 2025 x86_64
User: babak (1000)
PHP: 8.3.6
Disabled: NONE
Upload Files
File: /var/dev/nowruzgan/travelogue/node_modules/ol/transform.js
/**
 * @module ol/transform
 */
import {assert} from './asserts.js';

/**
 * An array representing an affine 2d transformation for use with
 * {@link module:ol/transform} functions. The array has 6 elements.
 * @typedef {!Array<number>} Transform
 * @api
 */

/**
 * Collection of affine 2d transformation functions. The functions work on an
 * array of 6 elements. The element order is compatible with the [SVGMatrix
 * interface](https://developer.mozilla.org/en-US/docs/Web/API/SVGMatrix) and is
 * a subset (elements a to f) of a 3×3 matrix:
 * ```
 * [ a c e ]
 * [ b d f ]
 * [ 0 0 1 ]
 * ```
 */

/**
 * @private
 * @type {Transform}
 */
const tmp_ = new Array(6);

/**
 * Create an identity transform.
 * @return {!Transform} Identity transform.
 */
export function create() {
  return [1, 0, 0, 1, 0, 0];
}

/**
 * Resets the given transform to an identity transform.
 * @param {!Transform} transform Transform.
 * @return {!Transform} Transform.
 */
export function reset(transform) {
  return set(transform, 1, 0, 0, 1, 0, 0);
}

/**
 * Multiply the underlying matrices of two transforms and return the result in
 * the first transform.
 * @param {!Transform} transform1 Transform parameters of matrix 1.
 * @param {!Transform} transform2 Transform parameters of matrix 2.
 * @return {!Transform} transform1 multiplied with transform2.
 */
export function multiply(transform1, transform2) {
  const a1 = transform1[0];
  const b1 = transform1[1];
  const c1 = transform1[2];
  const d1 = transform1[3];
  const e1 = transform1[4];
  const f1 = transform1[5];
  const a2 = transform2[0];
  const b2 = transform2[1];
  const c2 = transform2[2];
  const d2 = transform2[3];
  const e2 = transform2[4];
  const f2 = transform2[5];

  transform1[0] = a1 * a2 + c1 * b2;
  transform1[1] = b1 * a2 + d1 * b2;
  transform1[2] = a1 * c2 + c1 * d2;
  transform1[3] = b1 * c2 + d1 * d2;
  transform1[4] = a1 * e2 + c1 * f2 + e1;
  transform1[5] = b1 * e2 + d1 * f2 + f1;

  return transform1;
}

/**
 * Set the transform components a-f on a given transform.
 * @param {!Transform} transform Transform.
 * @param {number} a The a component of the transform.
 * @param {number} b The b component of the transform.
 * @param {number} c The c component of the transform.
 * @param {number} d The d component of the transform.
 * @param {number} e The e component of the transform.
 * @param {number} f The f component of the transform.
 * @return {!Transform} Matrix with transform applied.
 */
export function set(transform, a, b, c, d, e, f) {
  transform[0] = a;
  transform[1] = b;
  transform[2] = c;
  transform[3] = d;
  transform[4] = e;
  transform[5] = f;
  return transform;
}

/**
 * Set transform on one matrix from another matrix.
 * @param {!Transform} transform1 Matrix to set transform to.
 * @param {!Transform} transform2 Matrix to set transform from.
 * @return {!Transform} transform1 with transform from transform2 applied.
 */
export function setFromArray(transform1, transform2) {
  transform1[0] = transform2[0];
  transform1[1] = transform2[1];
  transform1[2] = transform2[2];
  transform1[3] = transform2[3];
  transform1[4] = transform2[4];
  transform1[5] = transform2[5];
  return transform1;
}

/**
 * Transforms the given coordinate with the given transform returning the
 * resulting, transformed coordinate. The coordinate will be modified in-place.
 *
 * @param {Transform} transform The transformation.
 * @param {import("./coordinate.js").Coordinate|import("./pixel.js").Pixel} coordinate The coordinate to transform.
 * @return {import("./coordinate.js").Coordinate|import("./pixel.js").Pixel} return coordinate so that operations can be
 *     chained together.
 */
export function apply(transform, coordinate) {
  const x = coordinate[0];
  const y = coordinate[1];
  coordinate[0] = transform[0] * x + transform[2] * y + transform[4];
  coordinate[1] = transform[1] * x + transform[3] * y + transform[5];
  return coordinate;
}

/**
 * Applies rotation to the given transform.
 * @param {!Transform} transform Transform.
 * @param {number} angle Angle in radians.
 * @return {!Transform} The rotated transform.
 */
export function rotate(transform, angle) {
  const cos = Math.cos(angle);
  const sin = Math.sin(angle);
  return multiply(transform, set(tmp_, cos, sin, -sin, cos, 0, 0));
}

/**
 * Applies scale to a given transform.
 * @param {!Transform} transform Transform.
 * @param {number} x Scale factor x.
 * @param {number} y Scale factor y.
 * @return {!Transform} The scaled transform.
 */
export function scale(transform, x, y) {
  return multiply(transform, set(tmp_, x, 0, 0, y, 0, 0));
}

/**
 * Creates a scale transform.
 * @param {!Transform} target Transform to overwrite.
 * @param {number} x Scale factor x.
 * @param {number} y Scale factor y.
 * @return {!Transform} The scale transform.
 */
export function makeScale(target, x, y) {
  return set(target, x, 0, 0, y, 0, 0);
}

/**
 * Applies translation to the given transform.
 * @param {!Transform} transform Transform.
 * @param {number} dx Translation x.
 * @param {number} dy Translation y.
 * @return {!Transform} The translated transform.
 */
export function translate(transform, dx, dy) {
  return multiply(transform, set(tmp_, 1, 0, 0, 1, dx, dy));
}

/**
 * Creates a composite transform given an initial translation, scale, rotation, and
 * final translation (in that order only, not commutative).
 * @param {!Transform} transform The transform (will be modified in place).
 * @param {number} dx1 Initial translation x.
 * @param {number} dy1 Initial translation y.
 * @param {number} sx Scale factor x.
 * @param {number} sy Scale factor y.
 * @param {number} angle Rotation (in counter-clockwise radians).
 * @param {number} dx2 Final translation x.
 * @param {number} dy2 Final translation y.
 * @return {!Transform} The composite transform.
 */
export function compose(transform, dx1, dy1, sx, sy, angle, dx2, dy2) {
  const sin = Math.sin(angle);
  const cos = Math.cos(angle);
  transform[0] = sx * cos;
  transform[1] = sy * sin;
  transform[2] = -sx * sin;
  transform[3] = sy * cos;
  transform[4] = dx2 * sx * cos - dy2 * sx * sin + dx1;
  transform[5] = dx2 * sy * sin + dy2 * sy * cos + dy1;
  return transform;
}

/**
 * Creates a composite transform given an initial translation, scale, rotation, and
 * final translation (in that order only, not commutative). The resulting transform
 * string can be applied as `transform` property of an HTMLElement's style.
 * @param {number} dx1 Initial translation x.
 * @param {number} dy1 Initial translation y.
 * @param {number} sx Scale factor x.
 * @param {number} sy Scale factor y.
 * @param {number} angle Rotation (in counter-clockwise radians).
 * @param {number} dx2 Final translation x.
 * @param {number} dy2 Final translation y.
 * @return {string} The composite css transform.
 * @api
 */
export function composeCssTransform(dx1, dy1, sx, sy, angle, dx2, dy2) {
  return toString(compose(create(), dx1, dy1, sx, sy, angle, dx2, dy2));
}

/**
 * Invert the given transform.
 * @param {!Transform} source The source transform to invert.
 * @return {!Transform} The inverted (source) transform.
 */
export function invert(source) {
  return makeInverse(source, source);
}

/**
 * Invert the given transform.
 * @param {!Transform} target Transform to be set as the inverse of
 *     the source transform.
 * @param {!Transform} source The source transform to invert.
 * @return {!Transform} The inverted (target) transform.
 */
export function makeInverse(target, source) {
  const det = determinant(source);
  assert(det !== 0, 'Transformation matrix cannot be inverted');

  const a = source[0];
  const b = source[1];
  const c = source[2];
  const d = source[3];
  const e = source[4];
  const f = source[5];

  target[0] = d / det;
  target[1] = -b / det;
  target[2] = -c / det;
  target[3] = a / det;
  target[4] = (c * f - d * e) / det;
  target[5] = -(a * f - b * e) / det;

  return target;
}

/**
 * Returns the determinant of the given matrix.
 * @param {!Transform} mat Matrix.
 * @return {number} Determinant.
 */
export function determinant(mat) {
  return mat[0] * mat[3] - mat[1] * mat[2];
}

/**
 * @type {Array}
 */
const matrixPrecision = [1e5, 1e5, 1e5, 1e5, 2, 2];

/**
 * A matrix string version of the transform.  This can be used
 * for CSS transforms.
 * @param {!Transform} mat Matrix.
 * @return {string} The transform as a string.
 */
export function toString(mat) {
  const transformString = 'matrix(' + mat.join(', ') + ')';
  return transformString;
}

/**
 * Create a transform from a CSS transform matrix string.
 * @param {string} cssTransform The CSS string to parse.
 * @return {!Transform} The transform.
 */
function fromString(cssTransform) {
  const values = cssTransform.substring(7, cssTransform.length - 1).split(',');
  return values.map(parseFloat);
}

/**
 * Compare two matrices for equality.
 * @param {!string} cssTransform1 A CSS transform matrix string.
 * @param {!string} cssTransform2 A CSS transform matrix string.
 * @return {boolean} The two matrices are equal.
 */
export function equivalent(cssTransform1, cssTransform2) {
  const mat1 = fromString(cssTransform1);
  const mat2 = fromString(cssTransform2);
  for (let i = 0; i < 6; ++i) {
    if (Math.round((mat1[i] - mat2[i]) * matrixPrecision[i]) !== 0) {
      return false;
    }
  }
  return true;
}