File: /var/dev/nowruzgan/travelogue/node_modules/ol/transform.js
/**
* @module ol/transform
*/
import {assert} from './asserts.js';
/**
* An array representing an affine 2d transformation for use with
* {@link module:ol/transform} functions. The array has 6 elements.
* @typedef {!Array<number>} Transform
* @api
*/
/**
* Collection of affine 2d transformation functions. The functions work on an
* array of 6 elements. The element order is compatible with the [SVGMatrix
* interface](https://developer.mozilla.org/en-US/docs/Web/API/SVGMatrix) and is
* a subset (elements a to f) of a 3×3 matrix:
* ```
* [ a c e ]
* [ b d f ]
* [ 0 0 1 ]
* ```
*/
/**
* @private
* @type {Transform}
*/
const tmp_ = new Array(6);
/**
* Create an identity transform.
* @return {!Transform} Identity transform.
*/
export function create() {
return [1, 0, 0, 1, 0, 0];
}
/**
* Resets the given transform to an identity transform.
* @param {!Transform} transform Transform.
* @return {!Transform} Transform.
*/
export function reset(transform) {
return set(transform, 1, 0, 0, 1, 0, 0);
}
/**
* Multiply the underlying matrices of two transforms and return the result in
* the first transform.
* @param {!Transform} transform1 Transform parameters of matrix 1.
* @param {!Transform} transform2 Transform parameters of matrix 2.
* @return {!Transform} transform1 multiplied with transform2.
*/
export function multiply(transform1, transform2) {
const a1 = transform1[0];
const b1 = transform1[1];
const c1 = transform1[2];
const d1 = transform1[3];
const e1 = transform1[4];
const f1 = transform1[5];
const a2 = transform2[0];
const b2 = transform2[1];
const c2 = transform2[2];
const d2 = transform2[3];
const e2 = transform2[4];
const f2 = transform2[5];
transform1[0] = a1 * a2 + c1 * b2;
transform1[1] = b1 * a2 + d1 * b2;
transform1[2] = a1 * c2 + c1 * d2;
transform1[3] = b1 * c2 + d1 * d2;
transform1[4] = a1 * e2 + c1 * f2 + e1;
transform1[5] = b1 * e2 + d1 * f2 + f1;
return transform1;
}
/**
* Set the transform components a-f on a given transform.
* @param {!Transform} transform Transform.
* @param {number} a The a component of the transform.
* @param {number} b The b component of the transform.
* @param {number} c The c component of the transform.
* @param {number} d The d component of the transform.
* @param {number} e The e component of the transform.
* @param {number} f The f component of the transform.
* @return {!Transform} Matrix with transform applied.
*/
export function set(transform, a, b, c, d, e, f) {
transform[0] = a;
transform[1] = b;
transform[2] = c;
transform[3] = d;
transform[4] = e;
transform[5] = f;
return transform;
}
/**
* Set transform on one matrix from another matrix.
* @param {!Transform} transform1 Matrix to set transform to.
* @param {!Transform} transform2 Matrix to set transform from.
* @return {!Transform} transform1 with transform from transform2 applied.
*/
export function setFromArray(transform1, transform2) {
transform1[0] = transform2[0];
transform1[1] = transform2[1];
transform1[2] = transform2[2];
transform1[3] = transform2[3];
transform1[4] = transform2[4];
transform1[5] = transform2[5];
return transform1;
}
/**
* Transforms the given coordinate with the given transform returning the
* resulting, transformed coordinate. The coordinate will be modified in-place.
*
* @param {Transform} transform The transformation.
* @param {import("./coordinate.js").Coordinate|import("./pixel.js").Pixel} coordinate The coordinate to transform.
* @return {import("./coordinate.js").Coordinate|import("./pixel.js").Pixel} return coordinate so that operations can be
* chained together.
*/
export function apply(transform, coordinate) {
const x = coordinate[0];
const y = coordinate[1];
coordinate[0] = transform[0] * x + transform[2] * y + transform[4];
coordinate[1] = transform[1] * x + transform[3] * y + transform[5];
return coordinate;
}
/**
* Applies rotation to the given transform.
* @param {!Transform} transform Transform.
* @param {number} angle Angle in radians.
* @return {!Transform} The rotated transform.
*/
export function rotate(transform, angle) {
const cos = Math.cos(angle);
const sin = Math.sin(angle);
return multiply(transform, set(tmp_, cos, sin, -sin, cos, 0, 0));
}
/**
* Applies scale to a given transform.
* @param {!Transform} transform Transform.
* @param {number} x Scale factor x.
* @param {number} y Scale factor y.
* @return {!Transform} The scaled transform.
*/
export function scale(transform, x, y) {
return multiply(transform, set(tmp_, x, 0, 0, y, 0, 0));
}
/**
* Creates a scale transform.
* @param {!Transform} target Transform to overwrite.
* @param {number} x Scale factor x.
* @param {number} y Scale factor y.
* @return {!Transform} The scale transform.
*/
export function makeScale(target, x, y) {
return set(target, x, 0, 0, y, 0, 0);
}
/**
* Applies translation to the given transform.
* @param {!Transform} transform Transform.
* @param {number} dx Translation x.
* @param {number} dy Translation y.
* @return {!Transform} The translated transform.
*/
export function translate(transform, dx, dy) {
return multiply(transform, set(tmp_, 1, 0, 0, 1, dx, dy));
}
/**
* Creates a composite transform given an initial translation, scale, rotation, and
* final translation (in that order only, not commutative).
* @param {!Transform} transform The transform (will be modified in place).
* @param {number} dx1 Initial translation x.
* @param {number} dy1 Initial translation y.
* @param {number} sx Scale factor x.
* @param {number} sy Scale factor y.
* @param {number} angle Rotation (in counter-clockwise radians).
* @param {number} dx2 Final translation x.
* @param {number} dy2 Final translation y.
* @return {!Transform} The composite transform.
*/
export function compose(transform, dx1, dy1, sx, sy, angle, dx2, dy2) {
const sin = Math.sin(angle);
const cos = Math.cos(angle);
transform[0] = sx * cos;
transform[1] = sy * sin;
transform[2] = -sx * sin;
transform[3] = sy * cos;
transform[4] = dx2 * sx * cos - dy2 * sx * sin + dx1;
transform[5] = dx2 * sy * sin + dy2 * sy * cos + dy1;
return transform;
}
/**
* Creates a composite transform given an initial translation, scale, rotation, and
* final translation (in that order only, not commutative). The resulting transform
* string can be applied as `transform` property of an HTMLElement's style.
* @param {number} dx1 Initial translation x.
* @param {number} dy1 Initial translation y.
* @param {number} sx Scale factor x.
* @param {number} sy Scale factor y.
* @param {number} angle Rotation (in counter-clockwise radians).
* @param {number} dx2 Final translation x.
* @param {number} dy2 Final translation y.
* @return {string} The composite css transform.
* @api
*/
export function composeCssTransform(dx1, dy1, sx, sy, angle, dx2, dy2) {
return toString(compose(create(), dx1, dy1, sx, sy, angle, dx2, dy2));
}
/**
* Invert the given transform.
* @param {!Transform} source The source transform to invert.
* @return {!Transform} The inverted (source) transform.
*/
export function invert(source) {
return makeInverse(source, source);
}
/**
* Invert the given transform.
* @param {!Transform} target Transform to be set as the inverse of
* the source transform.
* @param {!Transform} source The source transform to invert.
* @return {!Transform} The inverted (target) transform.
*/
export function makeInverse(target, source) {
const det = determinant(source);
assert(det !== 0, 'Transformation matrix cannot be inverted');
const a = source[0];
const b = source[1];
const c = source[2];
const d = source[3];
const e = source[4];
const f = source[5];
target[0] = d / det;
target[1] = -b / det;
target[2] = -c / det;
target[3] = a / det;
target[4] = (c * f - d * e) / det;
target[5] = -(a * f - b * e) / det;
return target;
}
/**
* Returns the determinant of the given matrix.
* @param {!Transform} mat Matrix.
* @return {number} Determinant.
*/
export function determinant(mat) {
return mat[0] * mat[3] - mat[1] * mat[2];
}
/**
* @type {Array}
*/
const matrixPrecision = [1e5, 1e5, 1e5, 1e5, 2, 2];
/**
* A matrix string version of the transform. This can be used
* for CSS transforms.
* @param {!Transform} mat Matrix.
* @return {string} The transform as a string.
*/
export function toString(mat) {
const transformString = 'matrix(' + mat.join(', ') + ')';
return transformString;
}
/**
* Create a transform from a CSS transform matrix string.
* @param {string} cssTransform The CSS string to parse.
* @return {!Transform} The transform.
*/
function fromString(cssTransform) {
const values = cssTransform.substring(7, cssTransform.length - 1).split(',');
return values.map(parseFloat);
}
/**
* Compare two matrices for equality.
* @param {!string} cssTransform1 A CSS transform matrix string.
* @param {!string} cssTransform2 A CSS transform matrix string.
* @return {boolean} The two matrices are equal.
*/
export function equivalent(cssTransform1, cssTransform2) {
const mat1 = fromString(cssTransform1);
const mat2 = fromString(cssTransform2);
for (let i = 0; i < 6; ++i) {
if (Math.round((mat1[i] - mat2[i]) * matrixPrecision[i]) !== 0) {
return false;
}
}
return true;
}