HEX
Server: nginx/1.24.0
System: Linux nowruzgan 6.8.0-57-generic #59-Ubuntu SMP PREEMPT_DYNAMIC Sat Mar 15 17:40:59 UTC 2025 x86_64
User: babak (1000)
PHP: 8.3.6
Disabled: NONE
Upload Files
File: /var/dev/nowruzgan/travelogue/node_modules/rbush/index.js
import quickselect from 'quickselect';

export default class RBush {
    constructor(maxEntries = 9) {
        // max entries in a node is 9 by default; min node fill is 40% for best performance
        this._maxEntries = Math.max(4, maxEntries);
        this._minEntries = Math.max(2, Math.ceil(this._maxEntries * 0.4));
        this.clear();
    }

    all() {
        return this._all(this.data, []);
    }

    search(bbox) {
        let node = this.data;
        const result = [];

        if (!intersects(bbox, node)) return result;

        const toBBox = this.toBBox;
        const nodesToSearch = [];

        while (node) {
            for (let i = 0; i < node.children.length; i++) {
                const child = node.children[i];
                const childBBox = node.leaf ? toBBox(child) : child;

                if (intersects(bbox, childBBox)) {
                    if (node.leaf) result.push(child);
                    else if (contains(bbox, childBBox)) this._all(child, result);
                    else nodesToSearch.push(child);
                }
            }
            node = nodesToSearch.pop();
        }

        return result;
    }

    collides(bbox) {
        let node = this.data;

        if (!intersects(bbox, node)) return false;

        const nodesToSearch = [];
        while (node) {
            for (let i = 0; i < node.children.length; i++) {
                const child = node.children[i];
                const childBBox = node.leaf ? this.toBBox(child) : child;

                if (intersects(bbox, childBBox)) {
                    if (node.leaf || contains(bbox, childBBox)) return true;
                    nodesToSearch.push(child);
                }
            }
            node = nodesToSearch.pop();
        }

        return false;
    }

    load(data) {
        if (!(data && data.length)) return this;

        if (data.length < this._minEntries) {
            for (let i = 0; i < data.length; i++) {
                this.insert(data[i]);
            }
            return this;
        }

        // recursively build the tree with the given data from scratch using OMT algorithm
        let node = this._build(data.slice(), 0, data.length - 1, 0);

        if (!this.data.children.length) {
            // save as is if tree is empty
            this.data = node;

        } else if (this.data.height === node.height) {
            // split root if trees have the same height
            this._splitRoot(this.data, node);

        } else {
            if (this.data.height < node.height) {
                // swap trees if inserted one is bigger
                const tmpNode = this.data;
                this.data = node;
                node = tmpNode;
            }

            // insert the small tree into the large tree at appropriate level
            this._insert(node, this.data.height - node.height - 1, true);
        }

        return this;
    }

    insert(item) {
        if (item) this._insert(item, this.data.height - 1);
        return this;
    }

    clear() {
        this.data = createNode([]);
        return this;
    }

    remove(item, equalsFn) {
        if (!item) return this;

        let node = this.data;
        const bbox = this.toBBox(item);
        const path = [];
        const indexes = [];
        let i, parent, goingUp;

        // depth-first iterative tree traversal
        while (node || path.length) {

            if (!node) { // go up
                node = path.pop();
                parent = path[path.length - 1];
                i = indexes.pop();
                goingUp = true;
            }

            if (node.leaf) { // check current node
                const index = findItem(item, node.children, equalsFn);

                if (index !== -1) {
                    // item found, remove the item and condense tree upwards
                    node.children.splice(index, 1);
                    path.push(node);
                    this._condense(path);
                    return this;
                }
            }

            if (!goingUp && !node.leaf && contains(node, bbox)) { // go down
                path.push(node);
                indexes.push(i);
                i = 0;
                parent = node;
                node = node.children[0];

            } else if (parent) { // go right
                i++;
                node = parent.children[i];
                goingUp = false;

            } else node = null; // nothing found
        }

        return this;
    }

    toBBox(item) { return item; }

    compareMinX(a, b) { return a.minX - b.minX; }
    compareMinY(a, b) { return a.minY - b.minY; }

    toJSON() { return this.data; }

    fromJSON(data) {
        this.data = data;
        return this;
    }

    _all(node, result) {
        const nodesToSearch = [];
        while (node) {
            if (node.leaf) result.push(...node.children);
            else nodesToSearch.push(...node.children);

            node = nodesToSearch.pop();
        }
        return result;
    }

    _build(items, left, right, height) {

        const N = right - left + 1;
        let M = this._maxEntries;
        let node;

        if (N <= M) {
            // reached leaf level; return leaf
            node = createNode(items.slice(left, right + 1));
            calcBBox(node, this.toBBox);
            return node;
        }

        if (!height) {
            // target height of the bulk-loaded tree
            height = Math.ceil(Math.log(N) / Math.log(M));

            // target number of root entries to maximize storage utilization
            M = Math.ceil(N / Math.pow(M, height - 1));
        }

        node = createNode([]);
        node.leaf = false;
        node.height = height;

        // split the items into M mostly square tiles

        const N2 = Math.ceil(N / M);
        const N1 = N2 * Math.ceil(Math.sqrt(M));

        multiSelect(items, left, right, N1, this.compareMinX);

        for (let i = left; i <= right; i += N1) {

            const right2 = Math.min(i + N1 - 1, right);

            multiSelect(items, i, right2, N2, this.compareMinY);

            for (let j = i; j <= right2; j += N2) {

                const right3 = Math.min(j + N2 - 1, right2);

                // pack each entry recursively
                node.children.push(this._build(items, j, right3, height - 1));
            }
        }

        calcBBox(node, this.toBBox);

        return node;
    }

    _chooseSubtree(bbox, node, level, path) {
        while (true) {
            path.push(node);

            if (node.leaf || path.length - 1 === level) break;

            let minArea = Infinity;
            let minEnlargement = Infinity;
            let targetNode;

            for (let i = 0; i < node.children.length; i++) {
                const child = node.children[i];
                const area = bboxArea(child);
                const enlargement = enlargedArea(bbox, child) - area;

                // choose entry with the least area enlargement
                if (enlargement < minEnlargement) {
                    minEnlargement = enlargement;
                    minArea = area < minArea ? area : minArea;
                    targetNode = child;

                } else if (enlargement === minEnlargement) {
                    // otherwise choose one with the smallest area
                    if (area < minArea) {
                        minArea = area;
                        targetNode = child;
                    }
                }
            }

            node = targetNode || node.children[0];
        }

        return node;
    }

    _insert(item, level, isNode) {
        const bbox = isNode ? item : this.toBBox(item);
        const insertPath = [];

        // find the best node for accommodating the item, saving all nodes along the path too
        const node = this._chooseSubtree(bbox, this.data, level, insertPath);

        // put the item into the node
        node.children.push(item);
        extend(node, bbox);

        // split on node overflow; propagate upwards if necessary
        while (level >= 0) {
            if (insertPath[level].children.length > this._maxEntries) {
                this._split(insertPath, level);
                level--;
            } else break;
        }

        // adjust bboxes along the insertion path
        this._adjustParentBBoxes(bbox, insertPath, level);
    }

    // split overflowed node into two
    _split(insertPath, level) {
        const node = insertPath[level];
        const M = node.children.length;
        const m = this._minEntries;

        this._chooseSplitAxis(node, m, M);

        const splitIndex = this._chooseSplitIndex(node, m, M);

        const newNode = createNode(node.children.splice(splitIndex, node.children.length - splitIndex));
        newNode.height = node.height;
        newNode.leaf = node.leaf;

        calcBBox(node, this.toBBox);
        calcBBox(newNode, this.toBBox);

        if (level) insertPath[level - 1].children.push(newNode);
        else this._splitRoot(node, newNode);
    }

    _splitRoot(node, newNode) {
        // split root node
        this.data = createNode([node, newNode]);
        this.data.height = node.height + 1;
        this.data.leaf = false;
        calcBBox(this.data, this.toBBox);
    }

    _chooseSplitIndex(node, m, M) {
        let index;
        let minOverlap = Infinity;
        let minArea = Infinity;

        for (let i = m; i <= M - m; i++) {
            const bbox1 = distBBox(node, 0, i, this.toBBox);
            const bbox2 = distBBox(node, i, M, this.toBBox);

            const overlap = intersectionArea(bbox1, bbox2);
            const area = bboxArea(bbox1) + bboxArea(bbox2);

            // choose distribution with minimum overlap
            if (overlap < minOverlap) {
                minOverlap = overlap;
                index = i;

                minArea = area < minArea ? area : minArea;

            } else if (overlap === minOverlap) {
                // otherwise choose distribution with minimum area
                if (area < minArea) {
                    minArea = area;
                    index = i;
                }
            }
        }

        return index || M - m;
    }

    // sorts node children by the best axis for split
    _chooseSplitAxis(node, m, M) {
        const compareMinX = node.leaf ? this.compareMinX : compareNodeMinX;
        const compareMinY = node.leaf ? this.compareMinY : compareNodeMinY;
        const xMargin = this._allDistMargin(node, m, M, compareMinX);
        const yMargin = this._allDistMargin(node, m, M, compareMinY);

        // if total distributions margin value is minimal for x, sort by minX,
        // otherwise it's already sorted by minY
        if (xMargin < yMargin) node.children.sort(compareMinX);
    }

    // total margin of all possible split distributions where each node is at least m full
    _allDistMargin(node, m, M, compare) {
        node.children.sort(compare);

        const toBBox = this.toBBox;
        const leftBBox = distBBox(node, 0, m, toBBox);
        const rightBBox = distBBox(node, M - m, M, toBBox);
        let margin = bboxMargin(leftBBox) + bboxMargin(rightBBox);

        for (let i = m; i < M - m; i++) {
            const child = node.children[i];
            extend(leftBBox, node.leaf ? toBBox(child) : child);
            margin += bboxMargin(leftBBox);
        }

        for (let i = M - m - 1; i >= m; i--) {
            const child = node.children[i];
            extend(rightBBox, node.leaf ? toBBox(child) : child);
            margin += bboxMargin(rightBBox);
        }

        return margin;
    }

    _adjustParentBBoxes(bbox, path, level) {
        // adjust bboxes along the given tree path
        for (let i = level; i >= 0; i--) {
            extend(path[i], bbox);
        }
    }

    _condense(path) {
        // go through the path, removing empty nodes and updating bboxes
        for (let i = path.length - 1, siblings; i >= 0; i--) {
            if (path[i].children.length === 0) {
                if (i > 0) {
                    siblings = path[i - 1].children;
                    siblings.splice(siblings.indexOf(path[i]), 1);

                } else this.clear();

            } else calcBBox(path[i], this.toBBox);
        }
    }
}

function findItem(item, items, equalsFn) {
    if (!equalsFn) return items.indexOf(item);

    for (let i = 0; i < items.length; i++) {
        if (equalsFn(item, items[i])) return i;
    }
    return -1;
}

// calculate node's bbox from bboxes of its children
function calcBBox(node, toBBox) {
    distBBox(node, 0, node.children.length, toBBox, node);
}

// min bounding rectangle of node children from k to p-1
function distBBox(node, k, p, toBBox, destNode) {
    if (!destNode) destNode = createNode(null);
    destNode.minX = Infinity;
    destNode.minY = Infinity;
    destNode.maxX = -Infinity;
    destNode.maxY = -Infinity;

    for (let i = k; i < p; i++) {
        const child = node.children[i];
        extend(destNode, node.leaf ? toBBox(child) : child);
    }

    return destNode;
}

function extend(a, b) {
    a.minX = Math.min(a.minX, b.minX);
    a.minY = Math.min(a.minY, b.minY);
    a.maxX = Math.max(a.maxX, b.maxX);
    a.maxY = Math.max(a.maxY, b.maxY);
    return a;
}

function compareNodeMinX(a, b) { return a.minX - b.minX; }
function compareNodeMinY(a, b) { return a.minY - b.minY; }

function bboxArea(a)   { return (a.maxX - a.minX) * (a.maxY - a.minY); }
function bboxMargin(a) { return (a.maxX - a.minX) + (a.maxY - a.minY); }

function enlargedArea(a, b) {
    return (Math.max(b.maxX, a.maxX) - Math.min(b.minX, a.minX)) *
           (Math.max(b.maxY, a.maxY) - Math.min(b.minY, a.minY));
}

function intersectionArea(a, b) {
    const minX = Math.max(a.minX, b.minX);
    const minY = Math.max(a.minY, b.minY);
    const maxX = Math.min(a.maxX, b.maxX);
    const maxY = Math.min(a.maxY, b.maxY);

    return Math.max(0, maxX - minX) *
           Math.max(0, maxY - minY);
}

function contains(a, b) {
    return a.minX <= b.minX &&
           a.minY <= b.minY &&
           b.maxX <= a.maxX &&
           b.maxY <= a.maxY;
}

function intersects(a, b) {
    return b.minX <= a.maxX &&
           b.minY <= a.maxY &&
           b.maxX >= a.minX &&
           b.maxY >= a.minY;
}

function createNode(children) {
    return {
        children,
        height: 1,
        leaf: true,
        minX: Infinity,
        minY: Infinity,
        maxX: -Infinity,
        maxY: -Infinity
    };
}

// sort an array so that items come in groups of n unsorted items, with groups sorted between each other;
// combines selection algorithm with binary divide & conquer approach

function multiSelect(arr, left, right, n, compare) {
    const stack = [left, right];

    while (stack.length) {
        right = stack.pop();
        left = stack.pop();

        if (right - left <= n) continue;

        const mid = left + Math.ceil((right - left) / n / 2) * n;
        quickselect(arr, mid, left, right, compare);

        stack.push(left, mid, mid, right);
    }
}